PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m503–m504.
Published online 2010 April 10. doi:  10.1107/S1600536810011724
PMCID: PMC2979226

Bis(dicyclo­hexyl­phenyl­phosphine)silver(I) nitrate

Abstract

The title compound, [Ag(C18H27P)2]NO3, is a mononuclear salt species in which the Ag atom is coordinated by two phosphine ligands, forming a cation, with the nitrate as the counter-anion, weakly inter­acting with the Ag atom, resulting in Ag(...)O distances of 2.602 (6) and 2.679 (6) Å. The cationic silver–phosphine complex has a non-linear geometry in which the P—Ag—P angle is 154.662 (19)°. The Ag—P bond lengths are 2.4303 (6) and 2.4046 (5) Å.

Related literature

For a review of the chemistry of silver(I) complexes, see: Meijboom et al. (2009 [triangle]). For the coordination chemistry of AgX salts (X = F, Cl, Br, I, BF4 , PF6 , NO3 etc) with group 15 donor ligands, with the main focus on tertiary phosphines and in their context as potential anti­tumor agents, see: Berners-Price et al. (1998 [triangle]); Liu et al. (2008 [triangle]). For two- and three-coordinate AgX (X = NO3 ) complexes/salts with bulky phosphine ligands, see: Bowmaker et al. (1996 [triangle]); Camalli & Caruso (1988 [triangle]); Fenske et al. (2007 [triangle]); for X = NO2, see: Cingolani et al. (2002 [triangle]); for X = Cl, Br, I, CN, SCN and NCO-, see: Bowmaker et al. (1996 [triangle]); Bayler et al. (1996 [triangle]); and for two coordinate X = ClO4 -, see: Alyea et al. (1982 [triangle], 2002 [triangle]); Baiada et al. (1990 [triangle]). For the solution behavior of [LnAgX] complexes, see: Muetterties & Alegranti (1972 [triangle]). For atomic radii, see: Pauling (1960 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m503-scheme1.jpg

Experimental

Crystal data

  • [Ag(C18H27P)2]NO3
  • M r = 718.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m503-efi1.jpg
  • a = 10.9207 (4) Å
  • b = 13.6312 (5) Å
  • c = 12.2121 (5) Å
  • β = 106.896 (1)°
  • V = 1739.45 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 296 K
  • 0.42 × 0.34 × 0.14 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.756, T max = 0.908
  • 19954 measured reflections
  • 6614 independent reflections
  • 6503 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.055
  • S = 1.06
  • 6614 reflections
  • 389 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.28 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2322 Friedel pairs
  • Flack parameter: 0.041 (15)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]), PLATON (Spek, 2009 [triangle]) and DIAMOND (Brandenburg & Putz, 2005 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011724/bg2336sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011724/bg2336Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ARB thanks the Research Academy for Undergraduates, University of Johannesburg, for financial support. Financial assistance from the South African National Research Foundation and University of Johannesburg is gratefully acknowledged. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

supplementary crystallographic information

Comment

Reaction of silver(I) salts with monodentate tertiary phosphines in a 1:2 stoichiometric ratio generally results in the formation of either monomeric [AgX(PR3)2]/[Ag(PR3)2]+X- or dimeric complexes [{AgX(PR3)2}2] (Meijboom et al., 2009; Bowmaker et al., 1996 and references therein) depending on the donor properties of the phosphine ligand, the bulkiness of the ligand substituents and the donor capabilities of the anion. When π-acid ligands are used in such reactions the complexes formed have been shown to be stable and univalent and these can be two-, three- or four-coordinate depending upon the size and ligation capabilities of the ligands (Baiada et al., 1990). Generally a combination of a weak donor anion and bulky phosphine ligand often leads to the formation of two- or three-coordinate complexes.

The difference between two- and three-coordinate complexes is hinged on the correlation between increasing Ag—P bond distance and decreasing P—Ag—P angle which is determined by the donor properties of the anion (Bowmaker et al., 1996). The longer the interaction between the anion atom/s and the Ag atom, the more linear (closer to 180°) the P—Ag—P angle will be, although the presence of bulky phosphine ligands (such as tricyclohexylphosphine or phenyldicyclohexylphosphine) would also influence the P—Ag—P angle.

The title compound (I) crystallizes in the monoclinic noncentrosymmetric space group P21 and the asymmetric unit contains one Ag(I) cation and one nitrate anionic ligand. The crystal structure of the title compound [Ag{PPh(C6H11)2].NO3 (Fig. 1) shows that the complex contains well resolved [Ag{PPh(C6H11)2}2]+ cation and NO3- anion. Examination of the structure with PLATON (Spek, 2009) showed that there were no solvent accessible voids in the crystal lattice.

As shown in Fig. 1, the cation shows a nonlinear coordination sphere in which the P—Ag—P angle is 154.662 (19) °. The NO3- anion situated about 2.6 Å away from the Ag center. Similar distortions from linearity have been observed in [Ag{PPh2(C5H8)}2]+.ClO4- (Baiada et al., 1990). The distortion from linearity arises from weak electrostatic interactions of the Ag ion and the nitrate counterion which leads to Ag···O distances of 2.602 and 2.679 Å. In addition the presence of bulky cyclohexyl rings on the phosphine ligands may as well be a contributing factor to the nonlinear behaviour.

The cation Ag—P bond distances are 2.4303 (6) and 2.4046 (5) Å which are well within the Ag—P bond length range for two- or three-coordinate complexes of this type (2.352 -2.521 Å). Comparatively, the Ag—P distances of 2.461 (6) Å (Alyea et al., 1982) and 2.4409 (9) Å (Bayler et al., 1996) have been reported for the bis(trimesitylphosphine) silver(I) cation, an average of 2.416 (2) Å for [Ag{P(C5H9)Ph2}2].ClO4 (Baiada et al., 1990). Based on the sum of covalent radii of Ag and P atoms, the Ag—P distance is calculated as 2.44 Å (Pauling, 1960).

In the crystal, the AgI complex interacts with the three nitrate oxygens resulting in C—H···O intermolecular interactions [H51···O3 = 2.46 Å, C51—H51···O3 = 177 °; H55···O2i = 2.53 Å, C55—H55···O2 = 150 ° symmetry code: i: -x, y+1/2, z)] and a C—H···O intramolecular intraction (H56A···O1 = 2.42 Å, C56—H56A···O1 = 150 °). The structure is further stabilized by two C—H···π intermolecular interactions involving the phenyl rings [H25B···Cg1ii = 2.97 Å, C25—H25B···Cg1 = 161° and H15···Cg4ii = 2.85 Å, C15—H15···Cg4 = 151° (Fig. 2). Cg1 and Cg6 are the centroids of the C11/C12/C13/C14/C15/C16 and C41/C42/C43/C44/C45/C46 benzene rings]. Symmetry code for the two interactions, ii: is -x+1, y-1/2, -z+1. The two C—H···π interactions result in dimeric pairs of the the adjacent molecules involved (See Fig 2).

Despite the number of structural reports of [LnAgX] complexes, their solution behaviour, initiated by Muetterties & Alegranti (1972), has always shown that the coordinating ligands were labile in all complexes studied. Rapid ligand-exchange reactions have been reported for all 31P NMR spectroscopic investigations of ionic AgI monodentate phosphine complexes, thus making NMR spectroscopy of limited use for these types of complexes.

Experimental

AgNO3 (0.14 g, 0.50 mmol) and P{(C6H11)2Ph} (0.40 g, 1.0 mmol) were dissolved in warm ethanol to give a clear solution which on cooling and solvent evaporation deposited colourless crystals of [Ag{PPh(C6H11)2].+NO3- in good yield. IR: 699, 745, 1303, 1336, 1387, 2342, 2359, 2849, 2927.

Refinement

All hydrogen atoms were positioned geometrically, with C–H = 0.98 Å for methine Hydrogens, 0.97 Å for methylene hydrogen and 0.93 Å for aromatic hydrogens, and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
Fig. 2.
A perspective of (I) where C—H···O and C—H···π intermolecular interactions are shown in dashed lines [Symmetry codes: (i) -x+1, y-1/2, -z+1; (ii) -x+2, -y-1/2, -z+2].

Crystal data

[Ag(C18H27P)2]NO3F(000) = 756
Mr = 718.61Dx = 1.372 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 19966 reflections
a = 10.9207 (4) Åθ = 1.7–27.8°
b = 13.6312 (5) ŵ = 0.71 mm1
c = 12.2121 (5) ÅT = 296 K
β = 106.896 (1)°Plate, colourless
V = 1739.45 (11) Å30.42 × 0.34 × 0.14 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer6503 reflections with I > 2σ(I)
Detector resolution: 0 pixels mm-1Rint = 0.020
[var phi] and ω scansθmax = 27.8°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2004)h = −14→13
Tmin = 0.756, Tmax = 0.908k = −17→14
19954 measured reflectionsl = −15→15
6614 independent reflections

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0323P)2 + 0.3975P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.055Δρmax = 0.75 e Å3
S = 1.06Δρmin = −0.28 e Å3
6614 reflectionsAbsolute structure: Flack (1983), 2322 Friedel pairs
389 parametersFlack parameter: 0.041 (15)
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C110.62500 (19)0.63257 (16)0.56623 (17)0.0192 (4)
C120.7541 (2)0.65504 (18)0.57934 (19)0.0238 (4)
H120.80610.67810.6490.029*
C130.8040 (2)0.6424 (2)0.4866 (2)0.0304 (5)
H130.88770.66140.49360.036*
C140.7305 (2)0.60220 (18)0.38554 (19)0.0247 (5)
H140.76650.58950.32670.03*
C150.6018 (2)0.58046 (17)0.37122 (18)0.0216 (4)
H150.550.55780.30120.026*
C160.5517 (2)0.59328 (18)0.46349 (19)0.0230 (4)
H160.46750.5750.45570.028*
C210.5685 (2)0.51594 (16)0.74331 (19)0.0209 (4)
H210.53380.51880.80880.025*
C220.7053 (2)0.47939 (19)0.7908 (2)0.0297 (5)
H22A0.74750.48340.73120.036*
H22B0.75080.52210.85280.036*
C230.7135 (3)0.3754 (2)0.8343 (2)0.0347 (6)
H23A0.68730.37380.90360.042*
H23B0.80180.35370.85360.042*
C240.6306 (3)0.30502 (19)0.7477 (3)0.0379 (6)
H24A0.66520.29820.68340.046*
H24B0.63230.2410.78270.046*
C250.4941 (3)0.34062 (19)0.7054 (2)0.0344 (6)
H25A0.45570.33750.76760.041*
H25B0.44610.29730.64510.041*
C260.4845 (2)0.44473 (18)0.6600 (2)0.0283 (5)
H26A0.50850.44540.58950.034*
H26B0.39630.46640.64220.034*
C310.40036 (18)0.68109 (17)0.63811 (18)0.0175 (4)
H310.35710.63550.5770.021*
C320.3332 (2)0.67641 (18)0.7323 (2)0.0236 (4)
H32A0.37810.71790.79590.028*
H32B0.33540.60960.76030.028*
C330.1933 (2)0.7106 (2)0.6862 (2)0.0346 (6)
H33A0.14640.66530.62780.042*
H33B0.15390.71040.74780.042*
C340.1855 (3)0.8127 (2)0.6359 (2)0.0354 (6)
H34A0.22530.8590.69610.042*
H34B0.09640.83120.60460.042*
C350.2518 (2)0.8184 (2)0.5419 (2)0.0323 (5)
H35A0.24950.88550.51480.039*
H35B0.20670.77750.4780.039*
C360.3913 (2)0.78417 (17)0.5874 (2)0.0253 (5)
H36A0.43030.78460.52550.03*
H36B0.43840.82950.64570.03*
C410.61465 (18)0.98163 (16)0.93476 (17)0.0170 (4)
C420.4998 (2)0.93063 (17)0.91929 (18)0.0210 (4)
H420.49690.86350.90520.025*
C430.3901 (2)0.97931 (19)0.92474 (19)0.0257 (5)
H430.31460.94450.91570.031*
C440.3926 (2)1.07889 (19)0.94354 (19)0.0267 (5)
H440.31881.11130.94660.032*
C450.5064 (2)1.13139 (18)0.95813 (19)0.0247 (5)
H450.50791.19890.96970.03*
C460.6173 (2)1.08229 (17)0.95532 (18)0.0199 (4)
H460.69351.11680.96720.024*
C510.84078 (19)0.99516 (16)0.85746 (18)0.0192 (4)
H510.85761.05640.90140.023*
C520.7564 (2)1.0186 (2)0.7380 (2)0.0359 (6)
H52A0.67811.04940.74280.043*
H52B0.73360.95820.69480.043*
C530.8250 (2)1.0873 (3)0.6755 (3)0.0463 (8)
H53A0.77011.10010.59880.056*
H53B0.84311.14930.71590.056*
C540.9503 (2)1.0404 (2)0.6691 (2)0.0347 (6)
H54A0.9320.97980.62590.042*
H54B0.99361.08440.63010.042*
C551.0355 (2)1.0198 (2)0.7882 (2)0.0283 (5)
H55A1.05781.08120.82940.034*
H55B1.1140.98920.78350.034*
C560.9694 (2)0.95221 (19)0.8541 (2)0.0252 (5)
H56A0.95550.88830.81750.03*
H56B1.02440.94350.93160.03*
C610.85318 (19)0.89667 (16)1.07819 (17)0.0176 (4)
H610.92560.85431.07780.021*
C620.9082 (2)0.98983 (17)1.1412 (2)0.0248 (4)
H62A0.83911.03511.13940.03*
H62B0.96411.02081.10250.03*
C630.9839 (2)0.9693 (2)1.2660 (2)0.0297 (5)
H63A1.05940.93111.26790.036*
H63B1.0121.0311.30480.036*
C640.9043 (2)0.9140 (2)1.3288 (2)0.0323 (5)
H64A0.9570.89821.40550.039*
H64B0.83460.95551.33550.039*
C650.8500 (3)0.8203 (2)1.2667 (2)0.0380 (6)
H65A0.79510.78881.30610.046*
H65B0.91940.77561.26770.046*
C660.7729 (2)0.8412 (2)1.1425 (2)0.0322 (6)
H66A0.69810.87991.14160.039*
H66B0.74370.77971.10360.039*
P10.56910 (5)0.64378 (4)0.69333 (4)0.01558 (10)
P20.75517 (5)0.91135 (4)0.92785 (4)0.01542 (10)
Ag0.702066 (12)0.754956 (13)0.830004 (11)0.01948 (4)
N0.9763 (2)0.69958 (15)0.93701 (19)0.0315 (5)
O10.94184 (16)0.71192 (15)0.83128 (16)0.0352 (4)
O20.8923 (2)0.67588 (16)0.98484 (17)0.0425 (5)
O31.08964 (19)0.71145 (16)0.9931 (2)0.0535 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C110.0215 (9)0.0226 (11)0.0146 (10)0.0002 (8)0.0069 (8)−0.0013 (8)
C120.0194 (9)0.0303 (12)0.0206 (11)−0.0020 (9)0.0041 (8)−0.0032 (9)
C130.0204 (10)0.0448 (15)0.0277 (12)−0.0036 (10)0.0099 (9)−0.0033 (11)
C140.0276 (10)0.0296 (12)0.0199 (11)−0.0002 (9)0.0114 (9)−0.0007 (9)
C150.0229 (10)0.0249 (11)0.0154 (10)−0.0001 (9)0.0029 (8)−0.0039 (8)
C160.0185 (9)0.0301 (12)0.0203 (11)−0.0037 (9)0.0055 (8)−0.0029 (9)
C210.0238 (10)0.0192 (10)0.0203 (11)0.0045 (8)0.0073 (8)0.0018 (8)
C220.0261 (11)0.0269 (12)0.0325 (13)0.0049 (9)0.0026 (10)0.0035 (11)
C230.0449 (14)0.0338 (15)0.0279 (13)0.0170 (11)0.0142 (11)0.0062 (10)
C240.0504 (16)0.0240 (14)0.0440 (16)0.0075 (11)0.0210 (13)0.0112 (11)
C250.0402 (13)0.0242 (13)0.0445 (15)−0.0002 (10)0.0214 (12)0.0032 (11)
C260.0263 (11)0.0217 (12)0.0376 (14)−0.0022 (9)0.0103 (10)0.0026 (10)
C310.0136 (8)0.0222 (11)0.0150 (10)0.0021 (7)0.0015 (7)−0.0026 (8)
C320.0208 (9)0.0289 (12)0.0228 (11)0.0036 (8)0.0092 (9)0.0020 (9)
C330.0237 (11)0.0471 (15)0.0351 (15)0.0079 (11)0.0117 (11)−0.0034 (12)
C340.0311 (12)0.0393 (15)0.0336 (14)0.0166 (11)0.0061 (11)−0.0034 (12)
C350.0372 (13)0.0303 (13)0.0253 (12)0.0159 (11)0.0027 (10)0.0018 (10)
C360.0288 (11)0.0240 (12)0.0222 (11)0.0065 (8)0.0058 (9)0.0036 (8)
C410.0172 (9)0.0208 (10)0.0125 (9)0.0037 (8)0.0037 (7)0.0031 (8)
C420.0217 (10)0.0235 (11)0.0168 (10)−0.0012 (8)0.0041 (8)0.0017 (8)
C430.0181 (9)0.0376 (14)0.0213 (11)0.0009 (9)0.0057 (8)0.0037 (10)
C440.0246 (10)0.0363 (14)0.0192 (11)0.0111 (10)0.0065 (9)0.0027 (10)
C450.0313 (11)0.0251 (11)0.0173 (10)0.0080 (9)0.0062 (9)−0.0002 (9)
C460.0209 (9)0.0210 (11)0.0153 (10)0.0019 (8)0.0010 (8)0.0007 (8)
C510.0200 (9)0.0202 (10)0.0192 (10)0.0014 (8)0.0088 (8)0.0044 (8)
C520.0186 (10)0.0614 (19)0.0267 (13)0.0010 (11)0.0049 (9)0.0190 (12)
C530.0272 (11)0.075 (2)0.0376 (16)0.0090 (14)0.0113 (11)0.0342 (15)
C540.0247 (11)0.0609 (18)0.0195 (12)−0.0028 (11)0.0081 (10)0.0086 (11)
C550.0198 (10)0.0432 (15)0.0230 (13)−0.0013 (10)0.0081 (9)0.0018 (11)
C560.0202 (10)0.0330 (13)0.0224 (11)0.0049 (9)0.0061 (9)0.0063 (9)
C610.0161 (9)0.0187 (10)0.0158 (10)−0.0012 (7)0.0014 (7)0.0014 (8)
C620.0333 (11)0.0213 (11)0.0179 (11)−0.0080 (9)0.0043 (9)−0.0013 (9)
C630.0291 (11)0.0372 (14)0.0196 (12)−0.0083 (10)0.0018 (10)−0.0036 (10)
C640.0310 (12)0.0481 (16)0.0164 (11)0.0002 (11)0.0045 (9)0.0058 (11)
C650.0402 (14)0.0427 (16)0.0261 (13)−0.0098 (12)0.0018 (11)0.0140 (12)
C660.0345 (12)0.0365 (15)0.0207 (12)−0.0152 (11)0.0005 (10)0.0089 (10)
P10.0160 (2)0.0174 (3)0.0130 (2)0.00103 (18)0.00354 (18)−0.00190 (19)
P20.0160 (2)0.0154 (2)0.0141 (2)0.00057 (19)0.00320 (19)0.00052 (19)
Ag0.02057 (7)0.01953 (7)0.01629 (7)−0.00042 (7)0.00212 (5)−0.00397 (7)
N0.0290 (10)0.0190 (11)0.0357 (12)0.0087 (8)−0.0075 (9)−0.0074 (8)
O10.0291 (8)0.0424 (11)0.0296 (10)0.0055 (7)0.0012 (7)−0.0091 (8)
O20.0540 (12)0.0315 (10)0.0356 (11)0.0093 (9)0.0030 (9)0.0070 (8)
O30.0350 (10)0.0314 (11)0.0684 (15)0.0080 (8)−0.0255 (10)−0.0150 (10)

Geometric parameters (Å, °)

C11—C161.385 (3)C42—C431.389 (3)
C11—C121.406 (3)C42—H420.93
C11—P11.832 (2)C43—C441.376 (4)
C12—C131.402 (3)C43—H430.93
C12—H120.93C44—C451.399 (3)
C13—C141.376 (3)C44—H440.93
C13—H130.93C45—C461.393 (3)
C14—C151.397 (3)C45—H450.93
C14—H140.93C46—H460.93
C15—C161.399 (3)C51—C521.516 (3)
C15—H150.93C51—C561.534 (3)
C16—H160.93C51—P21.840 (2)
C21—C261.509 (3)C51—H510.98
C21—C221.520 (3)C52—C531.534 (4)
C21—P11.847 (2)C52—H52A0.97
C21—H210.98C52—H52B0.97
C22—C231.508 (4)C53—C541.532 (4)
C22—H22A0.97C53—H53A0.97
C22—H22B0.97C53—H53B0.97
C23—C241.516 (4)C54—C551.508 (3)
C23—H23A0.97C54—H54A0.97
C23—H23B0.97C54—H54B0.97
C24—C251.509 (4)C55—C561.534 (3)
C24—H24A0.97C55—H55A0.97
C24—H24B0.97C55—H55B0.97
C25—C261.516 (3)C56—H56A0.97
C25—H25A0.97C56—H56B0.97
C25—H25B0.97C61—C621.516 (3)
C26—H26A0.97C61—C661.535 (3)
C26—H26B0.97C61—P21.848 (2)
C31—C361.527 (3)C61—H610.98
C31—C321.535 (3)C62—C631.533 (3)
C31—P11.840 (2)C62—H62A0.97
C31—H310.98C62—H62B0.97
C32—C331.539 (3)C63—C641.517 (3)
C32—H32A0.97C63—H63A0.97
C32—H32B0.97C63—H63B0.97
C33—C341.513 (4)C64—C651.517 (4)
C33—H33A0.97C64—H64A0.97
C33—H33B0.97C64—H64B0.97
C34—C351.527 (4)C65—C661.533 (3)
C34—H34A0.97C65—H65A0.97
C34—H34B0.97C65—H65B0.97
C35—C361.534 (3)C66—H66A0.97
C35—H35A0.97C66—H66B0.97
C35—H35B0.97P1—Ag2.4046 (5)
C36—H36A0.97P2—Ag2.4303 (6)
C36—H36B0.97N—O31.239 (3)
C41—C461.394 (3)N—O11.247 (3)
C41—C421.398 (3)N—O21.265 (3)
C41—P21.832 (2)
C16—C11—C12118.95 (18)C42—C43—H43119.9
C16—C11—P1123.54 (15)C43—C44—C45120.0 (2)
C12—C11—P1117.10 (16)C43—C44—H44120
C13—C12—C11119.6 (2)C45—C44—H44120
C13—C12—H12120.2C46—C45—C44119.8 (2)
C11—C12—H12120.2C46—C45—H45120.1
C14—C13—C12120.7 (2)C44—C45—H45120.1
C14—C13—H13119.6C41—C46—C45120.3 (2)
C12—C13—H13119.6C41—C46—H46119.8
C13—C14—C15120.02 (19)C45—C46—H46119.8
C13—C14—H14120C52—C51—C56111.09 (18)
C15—C14—H14120C52—C51—P2109.34 (15)
C14—C15—C16119.2 (2)C56—C51—P2111.68 (15)
C14—C15—H15120.4C52—C51—H51108.2
C16—C15—H15120.4C56—C51—H51108.2
C11—C16—C15121.30 (19)P2—C51—H51108.2
C11—C16—H16119.4C51—C52—C53111.0 (2)
C15—C16—H16119.4C51—C52—H52A109.4
C26—C21—C22112.6 (2)C53—C52—H52A109.4
C26—C21—P1116.35 (16)C51—C52—H52B109.4
C22—C21—P1109.75 (16)C53—C52—H52B109.4
C26—C21—H21105.8H52A—C52—H52B108
C22—C21—H21105.8C54—C53—C52110.1 (3)
P1—C21—H21105.8C54—C53—H53A109.6
C23—C22—C21113.2 (2)C52—C53—H53A109.6
C23—C22—H22A108.9C54—C53—H53B109.6
C21—C22—H22A108.9C52—C53—H53B109.6
C23—C22—H22B108.9H53A—C53—H53B108.2
C21—C22—H22B108.9C55—C54—C53109.8 (2)
H22A—C22—H22B107.7C55—C54—H54A109.7
C22—C23—C24112.8 (2)C53—C54—H54A109.7
C22—C23—H23A109C55—C54—H54B109.7
C24—C23—H23A109C53—C54—H54B109.7
C22—C23—H23B109H54A—C54—H54B108.2
C24—C23—H23B109C54—C55—C56111.4 (2)
H23A—C23—H23B107.8C54—C55—H55A109.3
C25—C24—C23111.4 (2)C56—C55—H55A109.3
C25—C24—H24A109.3C54—C55—H55B109.3
C23—C24—H24A109.3C56—C55—H55B109.3
C25—C24—H24B109.3H55A—C55—H55B108
C23—C24—H24B109.3C51—C56—C55111.02 (19)
H24A—C24—H24B108C51—C56—H56A109.4
C24—C25—C26112.5 (2)C55—C56—H56A109.4
C24—C25—H25A109.1C51—C56—H56B109.4
C26—C25—H25A109.1C55—C56—H56B109.4
C24—C25—H25B109.1H56A—C56—H56B108
C26—C25—H25B109.1C62—C61—C66110.74 (18)
H25A—C25—H25B107.8C62—C61—P2116.34 (15)
C21—C26—C25113.1 (2)C66—C61—P2108.02 (15)
C21—C26—H26A109C62—C61—H61107.1
C25—C26—H26A109C66—C61—H61107.1
C21—C26—H26B109P2—C61—H61107.1
C25—C26—H26B109C61—C62—C63111.82 (19)
H26A—C26—H26B107.8C61—C62—H62A109.3
C36—C31—C32110.69 (18)C63—C62—H62A109.3
C36—C31—P1110.06 (15)C61—C62—H62B109.3
C32—C31—P1111.08 (15)C63—C62—H62B109.3
C36—C31—H31108.3H62A—C62—H62B107.9
C32—C31—H31108.3C64—C63—C62111.7 (2)
P1—C31—H31108.3C64—C63—H63A109.3
C31—C32—C33110.64 (19)C62—C63—H63A109.3
C31—C32—H32A109.5C64—C63—H63B109.3
C33—C32—H32A109.5C62—C63—H63B109.3
C31—C32—H32B109.5H63A—C63—H63B107.9
C33—C32—H32B109.5C65—C64—C63111.3 (2)
H32A—C32—H32B108.1C65—C64—H64A109.4
C34—C33—C32111.1 (2)C63—C64—H64A109.4
C34—C33—H33A109.4C65—C64—H64B109.4
C32—C33—H33A109.4C63—C64—H64B109.4
C34—C33—H33B109.4H64A—C64—H64B108
C32—C33—H33B109.4C64—C65—C66111.1 (2)
H33A—C33—H33B108C64—C65—H65A109.4
C33—C34—C35111.6 (2)C66—C65—H65A109.4
C33—C34—H34A109.3C64—C65—H65B109.4
C35—C34—H34A109.3C66—C65—H65B109.4
C33—C34—H34B109.3H65A—C65—H65B108
C35—C34—H34B109.3C65—C66—C61111.5 (2)
H34A—C34—H34B108C65—C66—H66A109.3
C34—C35—C36110.5 (2)C61—C66—H66A109.3
C34—C35—H35A109.6C65—C66—H66B109.3
C36—C35—H35A109.6C61—C66—H66B109.3
C34—C35—H35B109.6H66A—C66—H66B108
C36—C35—H35B109.6C11—P1—C31104.92 (10)
H35A—C35—H35B108.1C11—P1—C21103.60 (10)
C31—C36—C35111.56 (19)C31—P1—C21106.42 (10)
C31—C36—H36A109.3C11—P1—Ag110.98 (7)
C35—C36—H36A109.3C31—P1—Ag114.74 (7)
C31—C36—H36B109.3C21—P1—Ag115.12 (7)
C35—C36—H36B109.3C41—P2—C51104.07 (9)
H36A—C36—H36B108C41—P2—C61105.19 (9)
C46—C41—C42119.01 (19)C51—P2—C61107.77 (10)
C46—C41—P2123.32 (16)C41—P2—Ag113.46 (7)
C42—C41—P2117.66 (16)C51—P2—Ag113.33 (7)
C43—C42—C41120.6 (2)C61—P2—Ag112.34 (7)
C43—C42—H42119.7P1—Ag—P2154.662 (19)
C41—C42—H42119.7O3—N—O1120.5 (2)
C44—C43—C42120.2 (2)O3—N—O2121.4 (2)
C44—C43—H43119.9O1—N—O2118.1 (2)
C16—C11—C12—C133.5 (4)C64—C65—C66—C6155.6 (3)
P1—C11—C12—C13176.4 (2)C62—C61—C66—C65−55.0 (3)
C11—C12—C13—C14−4.3 (4)P2—C61—C66—C65176.6 (2)
C12—C13—C14—C154.9 (4)C16—C11—P1—C31−39.6 (2)
C13—C14—C15—C16−4.7 (4)C12—C11—P1—C31147.89 (18)
C12—C11—C16—C15−3.4 (4)C16—C11—P1—C2171.9 (2)
P1—C11—C16—C15−175.79 (19)C12—C11—P1—C21−100.68 (19)
C14—C15—C16—C114.0 (4)C16—C11—P1—Ag−164.03 (18)
C26—C21—C22—C23−49.1 (3)C12—C11—P1—Ag23.4 (2)
P1—C21—C22—C23179.65 (17)C36—C31—P1—C11−66.86 (17)
C21—C22—C23—C2451.1 (3)C32—C31—P1—C11170.20 (16)
C22—C23—C24—C25−53.0 (3)C36—C31—P1—C21−176.26 (15)
C23—C24—C25—C2653.3 (3)C32—C31—P1—C2160.80 (18)
C22—C21—C26—C2549.5 (3)C36—C31—P1—Ag55.19 (15)
P1—C21—C26—C25177.35 (16)C32—C31—P1—Ag−67.75 (17)
C24—C25—C26—C21−52.2 (3)C26—C21—P1—C11−59.47 (17)
C36—C31—C32—C3355.8 (3)C22—C21—P1—C1169.78 (18)
P1—C31—C32—C33178.34 (18)C26—C21—P1—C3150.86 (18)
C31—C32—C33—C34−56.2 (3)C22—C21—P1—C31−179.89 (16)
C32—C33—C34—C3556.5 (3)C26—C21—P1—Ag179.19 (13)
C33—C34—C35—C36−55.8 (3)C22—C21—P1—Ag−51.57 (17)
C32—C31—C36—C35−56.0 (2)C46—C41—P2—C51−37.0 (2)
P1—C31—C36—C35−179.19 (16)C42—C41—P2—C51143.49 (17)
C34—C35—C36—C3155.6 (3)C46—C41—P2—C6176.23 (19)
C46—C41—C42—C43−0.3 (3)C42—C41—P2—C61−103.30 (17)
P2—C41—C42—C43179.29 (17)C46—C41—P2—Ag−160.60 (15)
C41—C42—C43—C441.1 (3)C42—C41—P2—Ag19.87 (18)
C42—C43—C44—C45−0.5 (3)C52—C51—P2—C41−62.04 (19)
C43—C44—C45—C46−1.0 (3)C56—C51—P2—C41174.61 (16)
C42—C41—C46—C45−1.2 (3)C52—C51—P2—C61−173.38 (17)
P2—C41—C46—C45179.25 (16)C56—C51—P2—C6163.27 (18)
C44—C45—C46—C411.9 (3)C52—C51—P2—Ag61.67 (18)
C56—C51—C52—C53−55.5 (3)C56—C51—P2—Ag−61.68 (17)
P2—C51—C52—C53−179.2 (2)C62—C61—P2—C41−65.12 (17)
C51—C52—C53—C5458.0 (3)C66—C61—P2—C4160.08 (18)
C52—C53—C54—C55−58.9 (3)C62—C61—P2—C5145.45 (18)
C53—C54—C55—C5658.1 (3)C66—C61—P2—C51170.66 (16)
C52—C51—C56—C5553.9 (3)C62—C61—P2—Ag171.00 (13)
P2—C51—C56—C55176.25 (16)C66—C61—P2—Ag−63.80 (17)
C54—C55—C56—C51−55.7 (3)C11—P1—Ag—P2100.90 (8)
C66—C61—C62—C6354.3 (3)C31—P1—Ag—P2−17.80 (9)
P2—C61—C62—C63178.13 (16)C21—P1—Ag—P2−141.85 (8)
C61—C62—C63—C64−54.7 (3)C41—P2—Ag—P129.07 (9)
C62—C63—C64—C6554.9 (3)C51—P2—Ag—P1−89.33 (8)
C63—C64—C65—C66−55.4 (3)C61—P2—Ag—P1148.22 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2336).

References

  • Alyea, E. C., Ferguson, G. & Somogyvari, A. (1982). Inorg. Chem.21, 1369–1371.
  • Alyea, E. C., Kannan, S. & Meehan, P. R. (2002). Acta Cryst. C58, m365–m367. [PubMed]
  • Baiada, A., Jardine, F. H. & Willett, R. D. (1990). Inorg. Chem.29, 3042–3046.
  • Bayler, A., Schier, A., Bowmaker, G. A. & Schmidbaur, H. (1996). J. Am. Chem. Soc.118, 7006–7007.
  • Berners-Price, S. J., Bowen, R. J., Harvey, P. J., Healy, P. C. & Koutsantonis, G. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1743–1750.
  • Bowmaker, G. A., Harvey, P. J., Healy, P. C., Skelton, B. W. & White, A. H. (1996). J. Chem. Soc. Dalton Trans. pp. 2449–2465.
  • Brandenburg, K. & Putz, H. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Camalli, M. & Caruso, F. (1988). Inorg. Chim. Acta, 144, 205–211.
  • Cingolani, A., Pellei, M., Pettinari, C., Santini, C., Skelton, B. W. & White, A. H. (2002). Inorg. Chem.41, 6633–6645. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fenske, D., Rothenberger, A. & Wieber, S. (2007). Eur. J. Inorg. Chem. pp. 648–651.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Liu, J. J., Galetis, P., Farr, A., Maharaj, L., Samarasinha, H., McGechan, A. C., Baguley, B. C., Bowen, R. J., Berners-Price, S. J. & McKeage, M. J. (2008). J. Inorg. Biochem.102, 303–310. [PubMed]
  • Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev.253, 325–342.
  • Muetterties, E. L. & Alegranti, C. W. (1972). J. Am. Chem. Soc.94, 6386–6391.
  • Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., pp. 224, 256. Ithaca: Cornell University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography