PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1055.
Published online 2010 April 10. doi:  10.1107/S1600536810012754
PMCID: PMC2979224

3-(4-Hydroxy­phenyl­imino)indolin-2-one

Abstract

In the title compound, C14H10N2O2, the dihedral angle between the indole and benzene rings is 61.63 (4)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by N—H(...)O hydrogen bonds, generating rings of graph-set motif R 2 2(8). The dimers are further connected into a three-dimensional network by O—H(...)O and C—H(...)O hydrogen bonds.

Related literature

For the synthesis and applications of 3-imino­indole-2-one derivatives, see: Chen, Tang, Zhou & Hao (2009 [triangle]); Chen, Tang, Wang et al. (2009 [triangle]); Chen et al. (2007 [triangle]); Liu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1055-scheme1.jpg

Experimental

Crystal data

  • C14H10N2O2
  • M r = 238.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1055-efi1.jpg
  • a = 5.7662 (17) Å
  • b = 15.383 (5) Å
  • c = 12.898 (4) Å
  • β = 100.479 (16)°
  • V = 1124.9 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 K
  • 0.36 × 0.27 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.889, T max = 0.927
  • 6932 measured reflections
  • 2795 independent reflections
  • 1878 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.125
  • S = 1.03
  • 2795 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT-Plus (Bruker, 2002 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012754/rz2431sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012754/rz2431Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by two grants from the Scientific Research Plan Projects of Shaanxi Education Department (Nos. 08 J K414 and 09 J K702).

supplementary crystallographic information

Comment

3-Imine-indole-2-one derivatives have driven much attentions for their bioactivities such as anti-bacterial, anti-virus and neuroprotective activities (Chen, Tang, Zhou & Hao, 2009; Chen, Tang, Wang et al., 2009; Chen et al., 2007; Liu et al., 2003). The title compound, 3-(4-hydroxyphenylimino)indolin-2-one, has been synthesized by the condensation reaction of isatin and 4-aminophenol, and its crystal structure is reported herein.

The X-ray structural analysis confirmed the assignment of the structure from spectroscopic data. The molecular structure is depicted in Fig. 1, and a packing diagram of is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The dihedral angle between the indole and benzene rings is 61.63 (4)°. The C2–N2–C9 angle is 122.97 (12)°, and the C8–C2–N2–C9 torsion angle is -9.0 (3). In the crystal structure, centrosymmetrically related molecules are linked into dimers by N—H···O hydrogen bonds (Table 1) generating rings of graph set motif R22(8). The dimers are further connected into a three-dimensional network by O—H···O and C—H···O hydrogen bonds.

Experimental

Isatin (1 mmol) was dissolved in methanol (20 ml) and a methanol solution of 1.2 mmol 4-aminophenol (10 ml) was added dropwise, until the disappearance of isatin, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 1:1 v/v), to give the title compound. Yellow single crystals of the title compound suitable for X-ray analysis were obtained on slow evaporation of a methanol solution (30 ml) of the title compound (30 mg) over a period of 4 d. 1H-NMR (D6—DMSO, 400 MHz): 10.92 (1H, s), 9.56 (1H, s), 7.32 (2H, m), 6.86 (4H, m), 6.74 (3H, m); MS (EI) m/z: 238 (M+).

Refinement

All H atoms were placed at calculated positions and refined as riding, with C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.
Fig. 2.
Packing of the title compound viewed along the a axis. Intermolecular hyderogen bonds are drawn as dashed lines.

Crystal data

C14H10N2O2F(000) = 496.0
Mr = 238.24Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7285 reflections
a = 5.7662 (17) Åθ = 1.5–25.0°
b = 15.383 (5) ŵ = 0.10 mm1
c = 12.898 (4) ÅT = 296 K
β = 100.479 (16)°Block, colourless
V = 1124.9 (6) Å30.36 × 0.27 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2795 independent reflections
Radiation source: fine-focus sealed tube1878 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 29.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −7→7
Tmin = 0.889, Tmax = 0.927k = −14→20
6932 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0634P)2] where P = (Fo2 + 2Fc2)/3
2817 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.0767 (2)0.57962 (7)0.09248 (8)0.0495 (3)
C80.6699 (3)0.51698 (9)0.25693 (11)0.0352 (3)
C20.8660 (3)0.57392 (9)0.24134 (11)0.0340 (3)
C100.7471 (3)0.70670 (10)0.39972 (11)0.0393 (4)
H10A0.61980.70510.34390.047*
N20.9971 (2)0.63123 (8)0.29290 (9)0.0400 (3)
O20.9021 (2)0.79318 (8)0.66799 (7)0.0508 (3)
H2B0.80870.83380.65660.076*
C90.9565 (3)0.66564 (10)0.39018 (11)0.0353 (3)
C60.4499 (3)0.40004 (11)0.15667 (13)0.0475 (4)
H6A0.41900.36510.09690.057*
N10.7719 (2)0.48427 (9)0.09663 (9)0.0444 (4)
H1A0.76770.45960.03650.053*
C120.9123 (3)0.75150 (10)0.57572 (10)0.0355 (3)
C40.3698 (3)0.44199 (11)0.32725 (13)0.0486 (4)
H4A0.28350.43400.38080.058*
C30.5427 (3)0.50578 (11)0.33753 (12)0.0429 (4)
H3A0.57280.54050.39750.051*
C70.6211 (3)0.46330 (9)0.16765 (11)0.0375 (4)
C10.9229 (3)0.54782 (10)0.13512 (11)0.0388 (4)
C110.7262 (3)0.74994 (10)0.49164 (11)0.0373 (4)
H11A0.58600.77810.49680.045*
C50.3247 (3)0.39038 (11)0.23869 (14)0.0513 (4)
H5A0.20780.34810.23350.062*
C131.1198 (3)0.70905 (11)0.56766 (12)0.0475 (4)
H13A1.24410.70820.62480.057*
C141.1421 (3)0.66800 (12)0.47483 (12)0.0473 (4)
H14A1.28410.64150.46910.057*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0656 (8)0.0479 (7)0.0418 (6)−0.0122 (6)0.0279 (6)−0.0074 (5)
C80.0407 (9)0.0316 (8)0.0344 (7)0.0034 (6)0.0096 (6)0.0006 (6)
C20.0396 (9)0.0333 (8)0.0311 (7)0.0018 (6)0.0118 (6)−0.0011 (6)
C100.0357 (9)0.0460 (9)0.0333 (8)0.0007 (7)−0.0015 (6)−0.0071 (6)
N20.0444 (8)0.0408 (7)0.0370 (7)−0.0015 (6)0.0132 (6)−0.0065 (6)
O20.0590 (8)0.0577 (7)0.0318 (6)0.0143 (6)−0.0024 (5)−0.0126 (5)
C90.0372 (8)0.0367 (8)0.0329 (7)−0.0032 (6)0.0088 (6)−0.0056 (6)
C60.0539 (11)0.0398 (9)0.0491 (9)−0.0052 (8)0.0101 (8)−0.0073 (7)
N10.0591 (9)0.0440 (8)0.0339 (7)−0.0101 (7)0.0185 (6)−0.0116 (6)
C120.0413 (9)0.0357 (8)0.0279 (7)0.0013 (6)0.0023 (6)−0.0033 (6)
C40.0496 (11)0.0488 (10)0.0525 (10)−0.0006 (8)0.0228 (8)0.0083 (8)
C30.0518 (10)0.0416 (9)0.0386 (8)0.0025 (7)0.0174 (7)−0.0012 (7)
C70.0439 (9)0.0342 (8)0.0360 (8)0.0011 (7)0.0116 (7)−0.0002 (6)
C10.0485 (10)0.0371 (8)0.0334 (7)−0.0006 (7)0.0140 (7)−0.0012 (6)
C110.0339 (8)0.0399 (8)0.0375 (8)0.0037 (7)0.0047 (6)−0.0065 (7)
C50.0490 (11)0.0429 (10)0.0636 (11)−0.0070 (8)0.0148 (9)0.0040 (8)
C130.0405 (10)0.0587 (11)0.0384 (8)0.0079 (8)−0.0061 (7)−0.0083 (8)
C140.0347 (9)0.0562 (10)0.0504 (9)0.0061 (7)0.0061 (7)−0.0123 (8)

Geometric parameters (Å, °)

O1—C11.2271 (18)C6—H6A0.9300
C8—C31.388 (2)N1—C11.343 (2)
C8—C71.403 (2)N1—C71.4103 (18)
C8—C21.472 (2)N1—H1A0.8600
C2—N21.2682 (19)C12—C111.380 (2)
C2—C11.5197 (19)C12—C131.383 (2)
C10—C111.3835 (19)C4—C31.388 (2)
C10—C91.388 (2)C4—C51.376 (2)
C10—H10A0.9300C4—H4A0.9300
N2—C91.4199 (17)C3—H3A0.9300
O2—C121.3624 (16)C11—H11A0.9300
O2—H2B0.8200C5—H5A0.9300
C9—C141.383 (2)C13—C141.380 (2)
C6—C71.375 (2)C13—H13A0.9300
C6—C51.393 (2)C14—H14A0.9300
C3—C8—C7119.14 (14)C3—C4—H4A119.6
C3—C8—C2134.40 (14)C5—C4—H4A119.6
C7—C8—C2106.41 (12)C4—C3—C8118.99 (15)
N2—C2—C8137.84 (13)C4—C3—H3A120.5
N2—C2—C1116.76 (13)C8—C3—H3A120.5
C8—C2—C1105.25 (12)C6—C7—C8122.30 (14)
C11—C10—C9120.48 (14)C6—C7—N1127.65 (14)
C11—C10—H10A119.8C8—C7—N1110.06 (13)
C9—C10—H10A119.8O1—C1—N1126.69 (13)
C2—N2—C9122.96 (13)O1—C1—C2126.23 (14)
C12—O2—H2B109.5N1—C1—C2107.08 (12)
C14—C9—C10118.60 (13)C12—C11—C10120.35 (14)
C14—C9—N2118.64 (14)C12—C11—H11A119.8
C10—C9—N2122.26 (13)C10—C11—H11A119.8
C7—C6—C5117.31 (15)C6—C5—C4121.52 (16)
C7—C6—H6A121.3C6—C5—H5A119.2
C5—C6—H6A121.3C4—C5—H5A119.2
C1—N1—C7111.18 (12)C12—C13—C14119.96 (15)
C1—N1—H1A124.4C12—C13—H13A120.0
C7—N1—H1A124.4C14—C13—H13A120.0
C11—C12—C13119.48 (13)C9—C14—C13121.07 (15)
C11—C12—O2122.94 (13)C9—C14—H14A119.5
C13—C12—O2117.57 (13)C13—C14—H14A119.5
C3—C4—C5120.74 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2B···O1i0.821.962.7628 (17)165
N1—H1A···O1ii0.862.122.9071 (16)153
C10—H10A···O2iii0.932.383.275 (2)160
C11—H11A···O1i0.932.523.117 (2)122

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+2, −y+1, −z; (iii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2431).

References

  • Bruker (2002). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, G., Tang, Y., Wang, M. X., Zhang, J. & Hao, X. J. (2009). Chem. World, 50, 620–622.
  • Chen, G., Tang, Y., Zhou, L. G. & Hao, X. J. (2009). Huaxue Tongbao, 72, W09003.
  • Chen, G., Wang, Y., He, H. P., Li, S. L., Zhou, L. G. & Hao, X. J. (2007). Acta Bot. Yunnanica, 29, 717–721.
  • Liu, Y. C., Lashuel, H. A., Choi, S. W., Xing, X. C., Case, A., Ni, J., Yeh, L. A., Cuny, G. D., Stein, R. L. & Lansbury, P. T. (2003). Chem. Biol.10, 837–846. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography