PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m516.
Published online 2010 April 10. doi:  10.1107/S1600536810012675
PMCID: PMC2979222

{N-[(2-Oxido-1-naphth­yl)methyl­idene]­serinato-κ3 O,N,O′}(1,10-phenanthroline-κ2 N,N′)copper(II)

Abstract

In the title complex, [Cu(C14H11NO4)(C12H8N2)], the tridentate Schiff base ligand is derived from the condensation of 2-hydr­oxy-1-naphthaldehyde and l-serine. The CuII atom is five-coordinated by one N atom and two O atoms from the Schiff base ligand and by two N atoms from a 1,10-phenanthroline ligand in a distorted square-pyramidal geometry. In the crystal structure, the combination of inter­molecular O—H(...)O and C—H(...)O hydrogen bonds results in a two-dimensional network structure parallel to (001).

Related literature

For general background to Schiff base complexes, see: Garnovski et al. (1993 [triangle]); Kalagouda et al. (2006 [triangle]); Wang et al. (1999 [triangle]). For our previous work on amino Schiff base complexes, see: Qiu et al. (2008 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m516-scheme1.jpg

Experimental

Crystal data

  • [Cu(C14H11NO4)(C12H8N2)]
  • M r = 500.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m516-efi1.jpg
  • a = 10.7302 (12) Å
  • b = 6.4687 (6) Å
  • c = 15.7930 (17) Å
  • β = 91.924 (1)°
  • V = 1095.6 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 298 K
  • 0.43 × 0.16 × 0.08 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.664, T max = 0.922
  • 5555 measured reflections
  • 3633 independent reflections
  • 3022 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.094
  • S = 0.97
  • 3633 reflections
  • 307 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 1529 Friedel pairs
  • Flack parameter: −0.023 (17)

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012675/hy2297sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012675/hy2297Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province for a research grant (grant No. Y2004B02).

supplementary crystallographic information

Comment

Amino acids are very important biomolecules because of their roles in biochemical reactions. Schiff base complexes have continued to play the role of the most important stereochemical models in main group and transition metal coordination chemistry with their easy preparation and structural variation (Garnovski et al., 1993). So efforts have been made to synthesize and characterize amino Schiff base complexes with transition metals, and more and more these new complexes have been reported (Kalagouda et al., 2006; Wang et al., 1999). As part of a series of our study (Qiu et al. 2008; Wang et al., 2007), we report here the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of 2-hydroxy-1-naphthaldehyde and L-serine.

The molecular structure of the title complex is shown in Fig. 1. The CuII atom is five-coordinated with two O atom and one N atom from a tridentate Schiff base ligand, and two N atoms from a 1,10-phenanthroline ligand, resulting in a distorted square-pyramidal geometry. O1, O4, N1 and N2 locate in a basal equatorial plane and N3 is at the apical position. The CuII atom deviates from the basal equatorial plane by 0.2005 (18) Å toward N3 atom, with a significantly longer Cu1—N3 bond distance [2.297 (4) Å] (Table 1). The apical Cu1—N3 bond deviates greatly from the right position to close the Cu1—N2 bond [N2—Cu1—N3 = 77.87 (14)°]. Additionally, the tridentate Schiff base ligand coordinates to the Cu atom, forming two chelating rings (Cu1, O1, C1, C2, N1 ring and Cu1, N1, C4, C5, C6, O4 ring). The two rings have dihedral angles of 10.84 (21) and 6.74 (21)° to the equatorial plane, respectively. The 1,10-phenanthroline chelating ring (Cu1, N2, C19, C20, N3) is almost perpendicular to the basal equatorial plane [dihedral angle = 85.91 (9)°]. In the crystal, the combination of intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) leads to a two-dimensional network (Fig. 2).

Experimental

L-Serine (1 mmol, 105.1 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissovlved in hot methanol (5 ml) and added in portions to a methanol solution of 2-hydroxy-1-naphthaldehyde (1 mmol, 172.19 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) was added dropwise and the mixture stirred for 3 h. Finally, a methanol solution (5 ml) of 1,10-phenanthroline (1 mmol, 198.2 mg) was added dropwise to the above solution and then stirred for 3 h. The solution was held at room temperature for 15 d, whereupon green needle crystals suitable for X-ray diffraction were obtained.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O) for hydroxyl group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound with hydrogen bonds shown as dashed lines.

Crystal data

[Cu(C14H11NO4)(C12H8N2)]F(000) = 514
Mr = 500.98Dx = 1.519 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 746 reflections
a = 10.7302 (12) Åθ = 3.3–25.2°
b = 6.4687 (6) ŵ = 1.04 mm1
c = 15.7930 (17) ÅT = 298 K
β = 91.924 (1)°Needle, green
V = 1095.6 (2) Å30.43 × 0.16 × 0.08 mm
Z = 2

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3633 independent reflections
Radiation source: fine-focus sealed tube3022 reflections with I > 2σ(I)
graphiteRint = 0.031
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.664, Tmax = 0.922k = −7→7
5555 measured reflectionsl = −18→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.094w = 1/[σ2(Fo2) + (0.0491P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3633 reflectionsΔρmax = 0.41 e Å3
307 parametersΔρmin = −0.25 e Å3
1 restraintAbsolute structure: Flack (1983), with 1529 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.023 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.85224 (4)0.14981 (9)0.75536 (3)0.04385 (16)
N10.6939 (3)0.2834 (6)0.7406 (2)0.0385 (8)
N21.0094 (3)−0.0200 (6)0.7612 (2)0.0472 (9)
N30.9778 (3)0.3251 (6)0.6648 (2)0.0455 (9)
O10.7806 (3)−0.0536 (5)0.6722 (2)0.0536 (8)
O20.6057 (4)−0.1294 (5)0.5986 (2)0.0629 (10)
O30.5115 (3)0.4941 (6)0.6180 (2)0.0682 (10)
H30.54630.60510.61030.102*
O40.8869 (3)0.2791 (5)0.86299 (18)0.0534 (8)
C10.6697 (4)−0.0168 (7)0.6467 (3)0.0455 (11)
C20.6124 (3)0.1876 (7)0.6743 (2)0.0394 (11)
H20.53110.15890.69830.047*
C30.5927 (5)0.3310 (8)0.5981 (3)0.0497 (12)
H3A0.67230.38710.58200.060*
H3B0.55780.25320.55050.060*
C40.6521 (4)0.4288 (7)0.7864 (3)0.0406 (10)
H40.57150.47510.77380.049*
C50.7188 (4)0.5272 (7)0.8559 (3)0.0412 (10)
C60.8261 (4)0.4355 (8)0.8927 (3)0.0463 (11)
C70.8738 (4)0.5219 (9)0.9718 (3)0.0568 (13)
H70.94100.45770.99970.068*
C80.8240 (4)0.6931 (9)1.0064 (3)0.0602 (15)
H80.85780.74311.05740.072*
C90.7211 (4)0.7988 (8)0.9669 (3)0.0524 (12)
C100.6680 (4)0.7142 (6)0.8910 (3)0.0434 (12)
C110.5671 (4)0.8226 (8)0.8529 (3)0.0534 (12)
H110.53000.77110.80320.064*
C120.5216 (5)1.0034 (8)0.8871 (3)0.0596 (13)
H120.45401.07020.86070.071*
C130.5764 (5)1.0859 (8)0.9608 (3)0.0642 (15)
H130.54671.20850.98330.077*
C140.6735 (5)0.9856 (9)0.9992 (3)0.0636 (14)
H140.70991.04121.04840.076*
C151.0230 (5)−0.1874 (8)0.8073 (3)0.0621 (14)
H150.9624−0.21910.84600.075*
C161.1243 (5)−0.3193 (11)0.8008 (4)0.0776 (17)
H161.1298−0.43810.83390.093*
C171.2155 (5)−0.2738 (9)0.7458 (4)0.0780 (18)
H171.2840−0.36080.74150.094*
C181.2056 (4)−0.0959 (8)0.6958 (3)0.0564 (13)
C191.0996 (4)0.0292 (8)0.7055 (3)0.0481 (11)
C201.0833 (4)0.2127 (7)0.6554 (3)0.0429 (12)
C211.1751 (4)0.2679 (9)0.5972 (3)0.0548 (12)
C221.1553 (5)0.4525 (10)0.5521 (3)0.0694 (16)
H221.21400.49700.51410.083*
C231.0512 (5)0.5663 (8)0.5637 (3)0.0671 (15)
H231.03830.68910.53400.080*
C240.9638 (4)0.4976 (8)0.6204 (3)0.0552 (12)
H240.89240.57640.62740.066*
C251.2954 (4)−0.0334 (11)0.6350 (4)0.0730 (17)
H251.3658−0.11470.62820.088*
C261.2811 (4)0.1357 (14)0.5886 (3)0.0708 (15)
H261.34090.16940.54960.085*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0443 (3)0.0443 (3)0.0434 (3)0.0024 (3)0.00652 (18)−0.0022 (3)
N10.0436 (18)0.036 (2)0.0364 (18)−0.0015 (16)0.0031 (15)−0.0063 (16)
N20.050 (2)0.046 (2)0.046 (2)−0.0002 (18)−0.0006 (17)0.0024 (19)
N30.052 (2)0.042 (2)0.043 (2)−0.0019 (19)0.0020 (16)0.0027 (18)
O10.0538 (19)0.048 (2)0.059 (2)0.0080 (16)0.0002 (16)−0.0130 (17)
O20.075 (2)0.048 (2)0.066 (2)−0.002 (2)−0.0035 (19)−0.0200 (19)
O30.068 (2)0.047 (2)0.089 (3)0.0030 (19)−0.0033 (19)0.002 (2)
O40.0529 (17)0.063 (2)0.0442 (17)0.0077 (17)−0.0007 (14)−0.0051 (16)
C10.054 (3)0.040 (3)0.043 (2)−0.006 (2)0.008 (2)−0.006 (2)
C20.0393 (19)0.040 (3)0.039 (2)−0.005 (2)0.0038 (16)−0.011 (2)
C30.058 (3)0.046 (3)0.045 (3)−0.006 (3)0.000 (2)0.002 (2)
C40.039 (2)0.041 (3)0.042 (2)−0.002 (2)0.0012 (18)−0.002 (2)
C50.046 (2)0.042 (3)0.036 (2)−0.006 (2)0.0052 (19)−0.004 (2)
C60.047 (2)0.053 (3)0.039 (2)−0.007 (2)0.0077 (19)−0.004 (2)
C70.051 (3)0.072 (4)0.047 (3)−0.001 (3)−0.003 (2)−0.006 (3)
C80.066 (3)0.069 (5)0.045 (2)−0.011 (3)−0.002 (2)−0.022 (3)
C90.057 (3)0.050 (3)0.051 (3)−0.010 (2)0.012 (2)−0.014 (2)
C100.054 (2)0.042 (3)0.036 (2)−0.007 (2)0.0115 (19)−0.0030 (18)
C110.064 (3)0.052 (3)0.045 (3)−0.004 (3)0.011 (2)−0.003 (2)
C120.073 (3)0.048 (3)0.058 (3)0.004 (3)0.018 (3)−0.003 (3)
C130.085 (4)0.047 (4)0.061 (3)−0.002 (3)0.024 (3)−0.013 (2)
C140.075 (3)0.058 (4)0.058 (3)−0.013 (3)0.010 (3)−0.024 (3)
C150.072 (3)0.054 (3)0.060 (3)−0.003 (3)−0.012 (3)0.011 (3)
C160.087 (3)0.054 (4)0.090 (4)0.010 (4)−0.035 (3)0.014 (4)
C170.057 (3)0.068 (4)0.106 (5)0.015 (3)−0.031 (3)−0.014 (3)
C180.041 (3)0.055 (3)0.071 (3)0.006 (2)−0.012 (2)−0.017 (3)
C190.039 (2)0.052 (3)0.053 (3)−0.001 (2)−0.005 (2)−0.014 (2)
C200.037 (2)0.049 (3)0.043 (2)−0.0048 (19)0.0044 (18)−0.006 (2)
C210.048 (3)0.065 (3)0.052 (3)−0.014 (3)0.008 (2)−0.010 (3)
C220.076 (4)0.080 (4)0.053 (3)−0.033 (3)0.008 (3)0.000 (3)
C230.087 (4)0.057 (4)0.057 (3)−0.019 (3)−0.008 (3)0.013 (2)
C240.060 (3)0.047 (3)0.058 (3)−0.004 (2)−0.010 (2)0.004 (2)
C250.041 (3)0.082 (5)0.097 (5)0.003 (3)0.009 (3)−0.035 (4)
C260.049 (3)0.092 (4)0.072 (3)−0.013 (4)0.018 (2)−0.027 (5)

Geometric parameters (Å, °)

Cu1—N11.914 (3)C9—C141.415 (7)
Cu1—N22.012 (4)C9—C101.419 (6)
Cu1—N32.297 (4)C10—C111.407 (6)
Cu1—O11.994 (3)C11—C121.385 (7)
Cu1—O41.920 (3)C11—H110.9300
N1—C41.278 (5)C12—C131.393 (7)
N1—C21.477 (5)C12—H120.9300
N2—C151.310 (6)C13—C141.353 (7)
N2—C191.367 (6)C13—H130.9300
N3—C241.324 (6)C14—H140.9300
N3—C201.358 (5)C15—C161.388 (7)
O1—C11.267 (5)C15—H150.9300
O2—C11.242 (5)C16—C171.363 (8)
O3—C31.411 (6)C16—H160.9300
O3—H30.8200C17—C181.398 (8)
O4—C61.300 (5)C17—H170.9300
C1—C21.527 (6)C18—C191.408 (6)
C2—C31.528 (6)C18—C251.441 (8)
C2—H20.9800C19—C201.434 (6)
C3—H3A0.9700C20—C211.415 (6)
C3—H3B0.9700C21—C221.403 (8)
C4—C51.438 (6)C21—C261.433 (8)
C4—H40.9300C22—C231.356 (8)
C5—C61.404 (6)C22—H220.9300
C5—C101.445 (6)C23—C241.391 (7)
C6—C71.447 (6)C23—H230.9300
C7—C81.353 (7)C24—H240.9300
C7—H70.9300C25—C261.323 (9)
C8—C91.424 (7)C25—H250.9300
C8—H80.9300C26—H260.9300
N1—Cu1—O493.23 (13)C14—C9—C8122.4 (5)
N1—Cu1—O184.06 (14)C10—C9—C8117.9 (4)
O4—Cu1—O1158.33 (14)C11—C10—C9116.8 (4)
N1—Cu1—N2172.54 (16)C11—C10—C5123.2 (4)
O4—Cu1—N293.43 (14)C9—C10—C5120.0 (4)
O1—Cu1—N288.51 (14)C12—C11—C10122.0 (4)
N1—Cu1—N3103.78 (14)C12—C11—H11119.0
O4—Cu1—N3103.66 (14)C10—C11—H11119.0
O1—Cu1—N397.86 (13)C11—C12—C13120.3 (5)
N2—Cu1—N377.87 (14)C11—C12—H12119.8
C4—N1—C2120.0 (3)C13—C12—H12119.8
C4—N1—Cu1126.2 (3)C14—C13—C12119.2 (5)
C2—N1—Cu1113.5 (3)C14—C13—H13120.4
C15—N2—C19118.8 (4)C12—C13—H13120.4
C15—N2—Cu1123.7 (3)C13—C14—C9122.0 (5)
C19—N2—Cu1117.0 (3)C13—C14—H14119.0
C24—N3—C20118.2 (4)C9—C14—H14119.0
C24—N3—Cu1133.4 (3)N2—C15—C16122.7 (5)
C20—N3—Cu1108.2 (3)N2—C15—H15118.7
C1—O1—Cu1115.0 (3)C16—C15—H15118.7
C3—O3—H3109.5C17—C16—C15119.7 (6)
C6—O4—Cu1125.0 (3)C17—C16—H16120.2
O2—C1—O1125.3 (4)C15—C16—H16120.2
O2—C1—C2117.5 (4)C16—C17—C18119.7 (5)
O1—C1—C2117.1 (4)C16—C17—H17120.2
N1—C2—C1109.3 (3)C18—C17—H17120.2
N1—C2—C3111.4 (4)C17—C18—C19117.3 (5)
C1—C2—C3110.3 (3)C17—C18—C25124.6 (5)
N1—C2—H2108.6C19—C18—C25118.1 (5)
C1—C2—H2108.6N2—C19—C18121.8 (5)
C3—C2—H2108.6N2—C19—C20118.2 (4)
O3—C3—C2110.4 (4)C18—C19—C20120.0 (4)
O3—C3—H3A109.6N3—C20—C21122.5 (4)
C2—C3—H3A109.6N3—C20—C19118.0 (4)
O3—C3—H3B109.6C21—C20—C19119.5 (4)
C2—C3—H3B109.6C22—C21—C20116.6 (5)
H3A—C3—H3B108.1C22—C21—C26124.5 (5)
N1—C4—C5125.7 (4)C20—C21—C26118.9 (5)
N1—C4—H4117.2C23—C22—C21120.3 (5)
C5—C4—H4117.2C23—C22—H22119.8
C6—C5—C4120.6 (4)C21—C22—H22119.8
C6—C5—C10120.6 (4)C22—C23—C24119.3 (5)
C4—C5—C10118.6 (4)C22—C23—H23120.3
O4—C6—C5126.5 (4)C24—C23—H23120.3
O4—C6—C7116.4 (4)N3—C24—C23122.9 (5)
C5—C6—C7117.1 (4)N3—C24—H24118.5
C8—C7—C6122.1 (5)C23—C24—H24118.5
C8—C7—H7118.9C26—C25—C18122.3 (5)
C6—C7—H7118.9C26—C25—H25118.9
C7—C8—C9121.8 (4)C18—C25—H25118.9
C7—C8—H8119.1C25—C26—C21121.2 (5)
C9—C8—H8119.1C25—C26—H26119.4
C14—C9—C10119.6 (5)C21—C26—H26119.4
O4—Cu1—N1—C49.5 (4)C7—C8—C9—C102.6 (7)
O1—Cu1—N1—C4168.0 (4)C14—C9—C10—C11−1.2 (6)
N3—Cu1—N1—C4−95.4 (4)C8—C9—C10—C11−179.5 (4)
O4—Cu1—N1—C2−164.0 (3)C14—C9—C10—C5177.9 (4)
O1—Cu1—N1—C2−5.6 (3)C8—C9—C10—C5−0.4 (6)
N3—Cu1—N1—C291.1 (3)C6—C5—C10—C11174.5 (4)
O4—Cu1—N2—C1577.5 (4)C4—C5—C10—C11−10.0 (6)
O1—Cu1—N2—C15−80.9 (4)C6—C5—C10—C9−4.5 (6)
N3—Cu1—N2—C15−179.3 (4)C4—C5—C10—C9170.9 (4)
O4—Cu1—N2—C19−111.2 (3)C9—C10—C11—C120.2 (6)
O1—Cu1—N2—C1990.4 (3)C5—C10—C11—C12−178.9 (4)
N3—Cu1—N2—C19−7.9 (3)C10—C11—C12—C130.9 (7)
N1—Cu1—N3—C2410.5 (4)C11—C12—C13—C14−1.0 (7)
O4—Cu1—N3—C24−86.3 (4)C12—C13—C14—C90.0 (7)
O1—Cu1—N3—C2496.3 (4)C10—C9—C14—C131.2 (7)
N2—Cu1—N3—C24−176.9 (4)C8—C9—C14—C13179.4 (5)
N1—Cu1—N3—C20−165.7 (3)C19—N2—C15—C16−1.2 (7)
O4—Cu1—N3—C2097.4 (3)Cu1—N2—C15—C16170.0 (4)
O1—Cu1—N3—C20−80.0 (3)N2—C15—C16—C171.2 (8)
N2—Cu1—N3—C206.8 (3)C15—C16—C17—C18−0.6 (8)
N1—Cu1—O1—C1−0.8 (3)C16—C17—C18—C190.1 (8)
O4—Cu1—O1—C183.0 (5)C16—C17—C18—C25−179.4 (5)
N2—Cu1—O1—C1178.6 (3)C15—N2—C19—C180.6 (7)
N3—Cu1—O1—C1−103.9 (3)Cu1—N2—C19—C18−171.2 (3)
N1—Cu1—O4—C6−13.8 (4)C15—N2—C19—C20179.9 (4)
O1—Cu1—O4—C6−95.8 (5)Cu1—N2—C19—C208.1 (5)
N2—Cu1—O4—C6169.6 (3)C17—C18—C19—N20.0 (7)
N3—Cu1—O4—C691.3 (3)C25—C18—C19—N2179.4 (4)
Cu1—O1—C1—O2−176.0 (4)C17—C18—C19—C20−179.3 (4)
Cu1—O1—C1—C26.9 (5)C25—C18—C19—C200.1 (6)
C4—N1—C2—C1−164.0 (4)C24—N3—C20—C21−3.1 (6)
Cu1—N1—C2—C110.0 (4)Cu1—N3—C20—C21173.8 (4)
C4—N1—C2—C373.8 (5)C24—N3—C20—C19178.2 (4)
Cu1—N1—C2—C3−112.2 (3)Cu1—N3—C20—C19−4.9 (4)
O2—C1—C2—N1171.6 (4)N2—C19—C20—N3−1.4 (6)
O1—C1—C2—N1−11.1 (5)C18—C19—C20—N3177.9 (4)
O2—C1—C2—C3−65.5 (5)N2—C19—C20—C21179.9 (4)
O1—C1—C2—C3111.8 (4)C18—C19—C20—C21−0.8 (6)
N1—C2—C3—O3−73.8 (4)N3—C20—C21—C223.2 (7)
C1—C2—C3—O3164.6 (4)C19—C20—C21—C22−178.1 (4)
C2—N1—C4—C5176.3 (4)N3—C20—C21—C26−177.3 (4)
Cu1—N1—C4—C53.1 (6)C19—C20—C21—C261.4 (7)
N1—C4—C5—C6−16.1 (7)C20—C21—C22—C23−1.4 (8)
N1—C4—C5—C10168.5 (4)C26—C21—C22—C23179.1 (5)
Cu1—O4—C6—C55.7 (6)C21—C22—C23—C24−0.4 (8)
Cu1—O4—C6—C7−174.7 (3)C20—N3—C24—C231.1 (7)
C4—C5—C6—O411.2 (7)Cu1—N3—C24—C23−174.8 (3)
C10—C5—C6—O4−173.4 (4)C22—C23—C24—N30.6 (8)
C4—C5—C6—C7−168.4 (4)C17—C18—C25—C26179.3 (5)
C10—C5—C6—C77.0 (6)C19—C18—C25—C26−0.1 (8)
O4—C6—C7—C8175.5 (4)C18—C25—C26—C210.7 (9)
C5—C6—C7—C8−4.8 (7)C22—C21—C26—C25178.1 (5)
C6—C7—C8—C90.0 (7)C20—C21—C26—C25−1.4 (8)
C7—C8—C9—C14−175.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.842.659 (5)172
C25—H25···O2ii0.932.633.454 (6)148

Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2297).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Garnovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Kalagouda, B. G., Manjula, S. P., Ramesh, S. V., Rashmi, V. S. & Siddappa, A. P. (2006). Transition Met. Chem.31, 580–585.
  • Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, L., Dong, J.-F., Li, L.-Z., Li, L.-W. & Wang, D.-Q. (2007). Acta Cryst. E63, m1059–m1060.
  • Wang, R.-M., Hao, C.-J., Wang, Y.-P. & Li, S.-B. (1999). J. Mol. Catal. A Chem.147, 173–178.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography