PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m531.
Published online 2010 April 17. doi:  10.1107/S1600536810013541
PMCID: PMC2979218

Bis[2-(cyclo­propyl­imino­meth­yl)-5-methoxy­phenolato]zinc(II)

Abstract

In the title complex, [Zn(C11H12NO2)2], the Zn2+ ion (site symmetry 2) is coordinated by two N,O-bidentate Schiff base ligands, generating a tetra­hedral ZnO2N2 geometry for the metal ion.

Related literature

For background to zinc complexes with Schiff bases, see: Maxim et al. (2008 [triangle]); Ali et al. (2004 [triangle]); Keypour et al. (2009 [triangle]); Osowole et al. (2008 [triangle]); Kulandaisamy & Thomas (2008 [triangle]). For related structures, see: Wei et al. (2007 [triangle]); Li & Zhang (2005 [triangle]); Parvez & Birdsall (1990 [triangle]); Cui et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m531-scheme1.jpg

Experimental

Crystal data

  • [Zn(C11H12NO2)2]
  • M r = 445.80
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m531-efi1.jpg
  • a = 8.9646 (18) Å
  • b = 10.628 (2) Å
  • c = 22.366 (4) Å
  • V = 2130.9 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.18 mm−1
  • T = 298 K
  • 0.23 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.773, T max = 0.798
  • 12146 measured reflections
  • 2424 independent reflections
  • 1492 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.126
  • S = 1.02
  • 2424 reflections
  • 133 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013541/hb5404sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013541/hb5404Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges Qiqihar University for funding this work.

supplementary crystallographic information

Comment

Zinc complexes with Schiff bases have attracted much attention in coordination chemistry and biological chemistry (Maxim et al., 2008; Ali et al., 2004; Keypour et al., 2009; Osowole et al., 2008; Kulandaisamy & Thomas, 2008). In the present paper, the title zinc(II) complex with the Schiff base 2-(cyclopropyliminomethyl)-5-methoxyphenol has been prepared and characterized by X-ray diffraction.

The title zinc complex, Fig. 1, possesses crystallographic two-fold rotation axis symmetry. The Zn atom is coordinated by two phenolic oxygen and two imino N atoms from two Schiff base ligands, generating a tetrahedral geometry. The bond lengths and angles (Table 1) around the Zn atom are typical and comparable to those in other Schiff base zinc(II) complexes (Wei et al., 2007; Li & Zhang, 2005; Parvez & Birdsall, 1990; Cui et al., 2009).

Experimental

2-Hydroxy-4-methoxybenzaldehyde (0.152 g, 1 mmol) and cyclopropylamine (0.057 g, 1 mmol) were mixed and refluxed in a methanol solution (50 ml) with stirring for 1 h. To the above solution was added a methanol solution (10 ml) of Zn(CH3COO)2.2H2O (0.110 g, 0.5 mmol). The mixture was stirred at reflux for another 1 h, and cooled to room temperature. After keeping the solution in air for a few days, colourless blocks of (I) were formed.

Refinement

Hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with C–H distances in the range 0.93-0.97 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids. Unlabeled atoms are at the symmetry position 1 - x, y, 3/2 - z.

Crystal data

[Zn(C11H12NO2)2]F(000) = 928
Mr = 445.80Dx = 1.390 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1989 reflections
a = 8.9646 (18) Åθ = 2.7–24.5°
b = 10.628 (2) ŵ = 1.18 mm1
c = 22.366 (4) ÅT = 298 K
V = 2130.9 (7) Å3Block, colourless
Z = 40.23 × 0.21 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer2424 independent reflections
Radiation source: fine-focus sealed tube1492 reflections with I > 2σ(I)
graphiteRint = 0.050
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→11
Tmin = 0.773, Tmax = 0.798k = −12→13
12146 measured reflectionsl = −28→28

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0608P)2 + 0.4149P] where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.55230 (4)0.75000.0614 (2)
N10.3162 (3)0.4471 (2)0.73578 (11)0.0623 (7)
O10.4246 (2)0.64630 (17)0.81662 (9)0.0670 (6)
O20.1210 (2)0.7046 (2)0.98928 (9)0.0731 (6)
C10.2075 (3)0.5152 (2)0.83071 (12)0.0514 (7)
C20.3079 (3)0.6121 (2)0.84814 (12)0.0516 (7)
C30.2785 (3)0.6755 (2)0.90190 (12)0.0552 (7)
H30.34180.74020.91390.066*
C40.1583 (3)0.6445 (3)0.93745 (12)0.0545 (7)
C50.0621 (4)0.5468 (3)0.92121 (13)0.0585 (7)
H5−0.01770.52430.94550.070*
C60.0882 (3)0.4853 (3)0.86889 (13)0.0569 (7)
H60.02400.42060.85790.068*
C70.2158 (4)0.4431 (2)0.77678 (15)0.0597 (7)
H70.13860.38600.77060.072*
C80.2943 (4)0.3637 (4)0.68479 (16)0.0864 (10)
H80.20620.30920.68680.104*
C90.4218 (5)0.3109 (5)0.6553 (2)0.1302 (19)
H9A0.41380.22550.64030.156*
H9B0.51980.33410.67000.156*
C100.3341 (6)0.4067 (5)0.6265 (2)0.1273 (17)
H10A0.37710.49010.62300.153*
H10B0.27110.38150.59330.153*
C110.1961 (5)0.8193 (3)1.00303 (15)0.0968 (12)
H11A0.30050.80291.00850.145*
H11B0.15550.85431.03910.145*
H11C0.18280.87780.97080.145*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0615 (4)0.0490 (3)0.0737 (4)0.0000.0197 (2)0.000
N10.0615 (17)0.0554 (14)0.0701 (17)0.0017 (12)0.0063 (12)−0.0116 (12)
O10.0642 (13)0.0551 (11)0.0817 (14)−0.0132 (10)0.0280 (11)−0.0105 (10)
O20.0773 (15)0.0828 (15)0.0593 (13)−0.0106 (12)0.0155 (10)−0.0056 (11)
C10.0463 (16)0.0465 (14)0.0613 (17)0.0000 (12)0.0041 (13)0.0014 (13)
C20.0491 (16)0.0423 (14)0.0636 (17)0.0024 (12)0.0075 (13)0.0035 (13)
C30.0554 (17)0.0466 (15)0.0634 (17)−0.0047 (13)0.0062 (13)−0.0015 (13)
C40.0557 (17)0.0542 (16)0.0537 (16)0.0038 (13)0.0006 (13)0.0056 (13)
C50.0490 (16)0.0639 (18)0.0625 (18)−0.0016 (14)0.0079 (14)0.0116 (15)
C60.0468 (17)0.0561 (17)0.0677 (19)−0.0050 (13)0.0014 (13)0.0055 (14)
C70.0516 (18)0.0504 (16)0.0771 (19)−0.0014 (14)0.0008 (16)−0.0037 (15)
C80.074 (2)0.102 (3)0.083 (2)0.007 (2)0.0097 (19)−0.021 (2)
C90.078 (3)0.156 (4)0.157 (4)0.030 (3)−0.009 (3)−0.095 (4)
C100.127 (4)0.164 (5)0.091 (3)−0.015 (4)0.004 (3)−0.027 (3)
C110.113 (3)0.097 (3)0.080 (3)−0.024 (2)0.021 (2)−0.031 (2)

Geometric parameters (Å, °)

Zn1—O11.9169 (19)C5—C61.360 (4)
Zn1—O1i1.9169 (19)C5—H50.9300
Zn1—N1i2.017 (3)C6—H60.9300
Zn1—N12.017 (3)C7—H70.9300
N1—C71.286 (4)C8—C101.427 (5)
N1—C81.458 (4)C8—C91.434 (5)
O1—C21.313 (3)C8—H80.9800
O2—C41.366 (3)C9—C101.439 (7)
O2—C111.426 (4)C9—H9A0.9700
C1—C61.405 (4)C9—H9B0.9700
C1—C21.422 (4)C10—H10A0.9700
C1—C71.431 (4)C10—H10B0.9700
C2—C31.403 (4)C11—H11A0.9600
C3—C41.380 (4)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.398 (4)
O1—Zn1—O1i117.19 (11)C1—C6—H6118.5
O1—Zn1—N1i117.02 (10)N1—C7—C1128.3 (3)
O1i—Zn1—N1i97.10 (9)N1—C7—H7115.9
O1—Zn1—N197.10 (9)C1—C7—H7115.9
O1i—Zn1—N1117.02 (10)C10—C8—C960.4 (3)
N1i—Zn1—N1112.64 (14)C10—C8—N1119.1 (4)
C7—N1—C8116.3 (3)C9—C8—N1119.4 (3)
C7—N1—Zn1118.6 (2)C10—C8—H8115.6
C8—N1—Zn1124.8 (2)C9—C8—H8115.6
C2—O1—Zn1123.65 (17)N1—C8—H8115.6
C4—O2—C11117.9 (2)C8—C9—C1059.6 (3)
C6—C1—C2118.6 (3)C8—C9—H9A117.8
C6—C1—C7115.5 (3)C10—C9—H9A117.8
C2—C1—C7125.9 (3)C8—C9—H9B117.8
O1—C2—C3118.5 (2)C10—C9—H9B117.8
O1—C2—C1123.9 (2)H9A—C9—H9B115.0
C3—C2—C1117.7 (2)C8—C10—C960.0 (3)
C4—C3—C2121.7 (3)C8—C10—H10A117.8
C4—C3—H3119.1C9—C10—H10A117.8
C2—C3—H3119.1C8—C10—H10B117.8
O2—C4—C3124.7 (3)C9—C10—H10B117.8
O2—C4—C5114.7 (3)H10A—C10—H10B114.9
C3—C4—C5120.7 (3)O2—C11—H11A109.5
C6—C5—C4118.3 (3)O2—C11—H11B109.5
C6—C5—H5120.8H11A—C11—H11B109.5
C4—C5—H5120.8O2—C11—H11C109.5
C5—C6—C1123.1 (3)H11A—C11—H11C109.5
C5—C6—H6118.5H11B—C11—H11C109.5

Symmetry codes: (i) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5404).

References

  • Ali, M. A., Mirza, A. H. & Fong, G. A. (2004). Transition Met. Chem.29, 613–619.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cui, Y.-M., Zhang, X., Liu, L. & Wang, Q. (2009). Acta Cryst. E65, m1151. [PMC free article] [PubMed]
  • Keypour, H., Rezaeivala, M., Valencia, L., Perez-Lourido, P. & Mahmoudkhani, A. H. (2009). Polyhedron, 28, 3415–3418.
  • Kulandaisamy, A. & Thomas, M. (2008). Pol. J. Chem.82, 469–480.
  • Li, Z.-X. & Zhang, X.-L. (2005). Acta Cryst. E61, m1755–m1756.
  • Maxim, C., Pasatoiu, T. D., Kravtsov, V. C., Shova, S., Muryn, C. A., Winpenny, R. E. P., Tuna, F. & Andruh, M. (2008). Inorg. Chim. Acta, 361, 14–15.
  • Osowole, A. A., Kolawole, G. A. & Fagade, O. E. (2008). J. Coord. Chem.61, 1046–1055.
  • Parvez, M. & Birdsall, W. J. (1990). Acta Cryst. C46, 1434–1437.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography