PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1087.
Published online 2010 April 14. doi:  10.1107/S1600536810013152
PMCID: PMC2979217

N-Phenyl-N-(prop-2-en-1-yl)benzene­sulfonamide

Abstract

In the mol­ecule of the title compound, C15H15NO2S, the dihedral angle between the two phenyl rings is 41.8 (3)°. The S atom has a distorted tetra­hedral environment. In the crystal structure, C—H(...)O hydrogen bonds link the molecules into a ribbon-like structure along [010].

Related literature

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Kazmierski et al. (2004 [triangle]); Beate et al. (1998 [triangle]); Skrzipczyk et al. (1994 [triangle]). For related structures, see: Arshad et al. (2009 [triangle]); Khan et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1087-scheme1.jpg

Experimental

Crystal data

  • C15H15NO2S
  • M r = 273.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1087-efi1.jpg
  • a = 11.6302 (8) Å
  • b = 5.7041 (4) Å
  • c = 21.9408 (14) Å
  • β = 103.535 (4)°
  • V = 1415.12 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 295 K
  • 0.25 × 0.12 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.958, T max = 0.978
  • 9448 measured reflections
  • 2467 independent reflections
  • 1803 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.245
  • S = 0.93
  • 2467 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013152/ci5071sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013152/ci5071Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Government College University and Hebei Polytechnic University for support of this work.

supplementary crystallographic information

Comment

Benzenesulfonamide derivatives have been used as starting materials for the preparation of a variety of sulfonamide drugs, such as inhibitors of HIV infection (Kazmierski et al., 2004) and antihypertensive drugs (Beate et al., 1998). In addition, they have also been employed in the preparation of gene probe labelling (Skrzipczyk et al., 1994). As an extension of our previous studies (Arshad et al., 2009; Khan et al., 2009), we report here the crystal structure of the title compound.

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The dihedral angle between the two phenyl rings is 41.8 (3)°. Atom S1 has a distorted tetrahedral environment, with a O1—S1—O2 angle of 120.2 (2)°. The C10—S1—N1—C4 torsion angle in the central part of the molecule is 86.2 (3)°.

In the crystal structure, adjacent molecules are linked via C—H···O hydrogen bonds (Table 1) to form a ribbon-like structure along the b axis (Fig.2).

Experimental

A mixture of N-phenyl benzenesulfonamide (0.5 g, 2.1552 mmol), sodium hydride (0.2 g, 8.333 mmol) and N,N-dimethylformamide (10 ml) was stirred at room temperature for 30 min and then allyl bromide (0.37 ml, 2.1552 mmol) was added. The stirring was continued further for a period of 3 h and the contents were poured over crushed ice. The precipitated product was isolated, washed and recrystallized from methanol solution.

Refinement

H atoms were placed in calculated positions, with C–H = 0.93 or 0.97 Å and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines

Crystal data

C15H15NO2SF(000) = 576
Mr = 273.35Dx = 1.283 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3368 reflections
a = 11.6302 (8) Åθ = 2.4–22.3°
b = 5.7041 (4) ŵ = 0.23 mm1
c = 21.9408 (14) ÅT = 295 K
β = 103.535 (4)°Plate, colourless
V = 1415.12 (17) Å30.25 × 0.12 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2467 independent reflections
Radiation source: fine-focus sealed tube1803 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.958, Tmax = 0.978k = −6→5
9448 measured reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.245H-atom parameters constrained
S = 0.93w = 1/[σ2(Fo2) + (0.1687P)2 + 2.1422P] where P = (Fo2 + 2Fc2)/3
2467 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.69888 (9)−0.0377 (2)0.71607 (5)0.0425 (4)
N10.6478 (3)0.1073 (6)0.65082 (15)0.0421 (9)
C90.7280 (4)−0.0195 (9)0.5639 (2)0.0500 (11)
H90.6824−0.15450.56150.060*
C100.7692 (3)0.1656 (8)0.77270 (17)0.0398 (10)
C130.8729 (5)0.5034 (11)0.8566 (2)0.0683 (15)
H130.90820.61880.88480.082*
C30.4412 (6)0.5309 (14)0.5687 (3)0.092 (2)
H3A0.46260.66440.59300.111*
H3B0.39180.54360.52880.111*
C40.7260 (4)0.1466 (8)0.60926 (17)0.0407 (10)
C10.5584 (4)0.2901 (9)0.6524 (2)0.0504 (11)
H1A0.51140.24340.68150.060*
H1B0.59820.43560.66750.060*
C110.8892 (4)0.2012 (9)0.7843 (2)0.0525 (12)
H110.93510.11280.76330.063*
C50.7939 (4)0.3460 (8)0.6128 (2)0.0512 (11)
H50.79290.45740.64370.061*
C20.4799 (4)0.3294 (11)0.5901 (2)0.0631 (14)
H20.45690.19940.56450.076*
C150.7010 (4)0.2992 (10)0.80332 (19)0.0548 (13)
H150.61990.27450.79580.066*
C70.8644 (4)0.2144 (11)0.5249 (2)0.0616 (14)
H70.91060.23840.49620.074*
C60.8631 (5)0.3801 (10)0.5706 (2)0.0616 (13)
H60.90900.51480.57280.074*
C140.7545 (5)0.4699 (11)0.8452 (2)0.0686 (16)
H140.70900.56190.86550.082*
O20.7865 (3)−0.1951 (6)0.70389 (14)0.0545 (9)
O10.5986 (3)−0.1260 (6)0.73525 (15)0.0582 (9)
C80.7983 (5)0.0159 (10)0.5219 (2)0.0616 (14)
H80.8005−0.09630.49140.074*
C120.9411 (4)0.3693 (11)0.8272 (2)0.0641 (15)
H121.02260.39150.83610.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0455 (7)0.0354 (7)0.0488 (7)0.0000 (5)0.0153 (5)0.0014 (4)
N10.0414 (18)0.042 (2)0.0431 (18)0.0055 (16)0.0106 (14)−0.0030 (16)
C90.057 (3)0.046 (3)0.047 (2)−0.001 (2)0.014 (2)−0.011 (2)
C100.037 (2)0.044 (3)0.041 (2)0.0036 (18)0.0143 (16)0.0044 (18)
C130.070 (4)0.075 (4)0.055 (3)−0.012 (3)0.005 (2)−0.016 (3)
C30.096 (5)0.112 (6)0.070 (4)0.050 (4)0.020 (3)0.021 (4)
C40.045 (2)0.039 (2)0.037 (2)0.0094 (19)0.0076 (16)0.0005 (17)
C10.044 (2)0.057 (3)0.051 (2)0.010 (2)0.0128 (18)−0.005 (2)
C110.040 (2)0.064 (3)0.056 (3)0.000 (2)0.0167 (19)0.002 (2)
C50.059 (3)0.036 (3)0.061 (3)0.005 (2)0.019 (2)−0.003 (2)
C20.052 (3)0.079 (4)0.057 (3)0.016 (3)0.010 (2)0.002 (3)
C150.039 (2)0.080 (4)0.045 (2)0.006 (2)0.0099 (18)−0.011 (2)
C70.058 (3)0.078 (4)0.053 (3)0.014 (3)0.022 (2)0.015 (3)
C60.066 (3)0.049 (3)0.074 (3)0.002 (3)0.026 (3)0.013 (3)
C140.062 (3)0.086 (4)0.056 (3)0.013 (3)0.008 (2)−0.022 (3)
O20.0622 (19)0.0412 (19)0.0631 (19)0.0148 (15)0.0206 (15)0.0029 (15)
O10.0529 (18)0.055 (2)0.070 (2)−0.0140 (16)0.0216 (15)0.0053 (17)
C80.074 (3)0.065 (4)0.050 (3)0.012 (3)0.022 (2)−0.008 (2)
C120.039 (2)0.091 (4)0.061 (3)−0.018 (3)0.009 (2)−0.003 (3)

Geometric parameters (Å, °)

S1—O11.422 (3)C1—C21.473 (6)
S1—O21.429 (3)C1—H1A0.97
S1—N11.640 (3)C1—H1B0.97
S1—C101.756 (4)C11—C121.380 (7)
N1—C41.448 (5)C11—H110.93
N1—C11.479 (5)C5—C61.377 (7)
C9—C41.379 (6)C5—H50.93
C9—C81.382 (7)C2—H20.93
C9—H90.93C15—C141.382 (7)
C10—C111.374 (6)C15—H150.93
C10—C151.382 (6)C7—C81.361 (8)
C13—C141.354 (8)C7—C61.379 (7)
C13—C121.368 (8)C7—H70.93
C13—H130.93C6—H60.93
C3—C21.283 (8)C14—H140.93
C3—H3A0.93C8—H80.93
C3—H3B0.93C12—H120.93
C4—C51.376 (6)
O1—S1—O2120.2 (2)H1A—C1—H1B107.9
O1—S1—N1106.41 (19)C10—C11—C12119.4 (4)
O2—S1—N1106.38 (18)C10—C11—H11120.3
O1—S1—C10107.66 (19)C12—C11—H11120.3
O2—S1—C10108.22 (19)C4—C5—C6119.8 (5)
N1—S1—C10107.3 (2)C4—C5—H5120.1
C4—N1—C1117.0 (3)C6—C5—H5120.1
C4—N1—S1118.4 (3)C3—C2—C1124.3 (6)
C1—N1—S1116.6 (3)C3—C2—H2117.8
C4—C9—C8119.6 (5)C1—C2—H2117.8
C4—C9—H9120.2C14—C15—C10119.4 (4)
C8—C9—H9120.2C14—C15—H15120.3
C11—C10—C15120.2 (4)C10—C15—H15120.3
C11—C10—S1120.9 (3)C8—C7—C6120.2 (5)
C15—C10—S1118.9 (3)C8—C7—H7119.9
C14—C13—C12120.7 (5)C6—C7—H7119.9
C14—C13—H13119.6C5—C6—C7120.0 (5)
C12—C13—H13119.6C5—C6—H6120.0
C2—C3—H3A120.0C7—C6—H6120.0
C2—C3—H3B120.0C13—C14—C15120.1 (5)
H3A—C3—H3B120.0C13—C14—H14119.9
C5—C4—C9120.2 (4)C15—C14—H14119.9
C5—C4—N1121.9 (4)C7—C8—C9120.3 (5)
C9—C4—N1117.9 (4)C7—C8—H8119.9
C2—C1—N1111.8 (4)C9—C8—H8119.9
C2—C1—H1A109.3C13—C12—C11120.1 (4)
N1—C1—H1A109.3C13—C12—H12120.0
C2—C1—H1B109.3C11—C12—H12120.0
N1—C1—H1B109.3
O1—S1—N1—C4−158.8 (3)C4—N1—C1—C258.4 (5)
O2—S1—N1—C4−29.5 (4)S1—N1—C1—C2−153.1 (4)
C10—S1—N1—C486.2 (3)C15—C10—C11—C120.8 (7)
O1—S1—N1—C153.2 (4)S1—C10—C11—C12177.3 (4)
O2—S1—N1—C1−177.5 (3)C9—C4—C5—C60.5 (7)
C10—S1—N1—C1−61.9 (3)N1—C4—C5—C6−177.3 (4)
O1—S1—C10—C11150.3 (4)N1—C1—C2—C3−141.8 (6)
O2—S1—C10—C1119.0 (4)C11—C10—C15—C140.5 (7)
N1—S1—C10—C11−95.5 (4)S1—C10—C15—C14−176.1 (4)
O1—S1—C10—C15−33.1 (4)C4—C5—C6—C7−0.1 (7)
O2—S1—C10—C15−164.5 (4)C8—C7—C6—C5−0.7 (8)
N1—S1—C10—C1581.1 (4)C12—C13—C14—C15−0.1 (9)
C8—C9—C4—C5−0.2 (7)C10—C15—C14—C13−0.9 (8)
C8—C9—C4—N1177.7 (4)C6—C7—C8—C91.0 (8)
C1—N1—C4—C555.6 (5)C4—C9—C8—C7−0.6 (7)
S1—N1—C4—C5−92.3 (4)C14—C13—C12—C111.5 (9)
C1—N1—C4—C9−122.2 (4)C10—C11—C12—C13−1.8 (8)
S1—N1—C4—C989.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.972.573.427 (6)147
C5—H5···O2ii0.932.393.307 (6)167
C15—H15···O1i0.932.543.415 (6)158

Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5071).

References

  • Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230. [PMC free article] [PubMed]
  • Beate, G., Nadenik, P. & Wagner, H. (1998). WO Patent No. 9855481.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kazmierski, W. M., Aquino, C. J., Bifulco, N., Boros, E. E., Chauder, B. A., Chong, P. Y., Duan, M., Deanda, F. Jr, Koble, C. S., Mclean, E. W., Peckham, J. P., Perkins, A. C., Thompson, J. B. & Vanderwall, D. (2004). WO Patent No. 2004054974.
  • Khan, I. U., Mustafa, G., Arshad, M. N., Shafiq, M. & Sharif, S. (2009). Acta Cryst. E65, o1073. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skrzipczyk, H. J., Uhlmann, E. & Mayer, A. (1994). EP Patent No. 602 524.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography