PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1129.
Published online 2010 April 21. doi:  10.1107/S1600536810013905
PMCID: PMC2979216

4,4′-Bipyridine–2,2′-(1,2-phenylene­dioxy)diacetic acid–water (1/1/1)

Abstract

In the title 1:1:1 adduct, C10H8N2·C10H10O6·H2O, the dihedral angle between the rings of the 4,4-bipyridine molecule is 10.981 (8)°. In the crystal, O—H(...)O and O—H(...)N hydrogen bonds link the mol­ecules into a zigzag chain structure.

Related literature

For the synthesis of 1,2-phenyl­enedi(oxyacetic acid), see: Mirci (1990 [triangle]). For related structures, see: Soleimannejad et al. (2009 [triangle]); Yu et al. (2006 [triangle]). For hydrogen-bonding motifs, see: Etter et al. (1990 [triangle]); Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1129-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·C10H10O6·H2O
  • M r = 400.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1129-efi1.jpg
  • a = 11.566 (5) Å
  • b = 9.712 (5) Å
  • c = 16.810 (7) Å
  • β = 90.81 (2)°
  • V = 1888.2 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 291 K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.979, T max = 0.987
  • 18105 measured reflections
  • 4306 independent reflections
  • 2654 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.113
  • S = 0.97
  • 4306 reflections
  • 262 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013905/dn2556sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013905/dn2556Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (50733002–01) and Jilin University for supporting this study.

supplementary crystallographic information

Comment

Flexible carboxylic acid and 4,4'-bipyridine are ofen used for constructing the high dimensional structure with intriguing topology. In this paper, we report the title compound, contained flexible 1,2-phenylenedi(oxyacetic acid), 4,4'-bipyridine and water molecules, which forms a one-dimensional hydrogen bonding chain strucutre.

The O—H···O hydrogen bonds link the 1,2-phenylenedi(oxyacetic acid) and water molecules into a 13-membered hydrogen bonding ring, with a unitary graph-set descriptorN1 = R22(13) (Etter et al., 1990; Bernstein et al., 1995) (Figure 1, Table 1). And then, 4,4'-bipyridine molecules bridge these hydrogen bonding rings into a one-dimensional zigzag chain through the O—H···N hydrogen bonds (Table 1, Figure 2). Similar hydrogen bonding interactions involving the 4,4'-bipyridine have being frequently observed (Soleimannejad et al., 2009; Yu et al., 2006).

Experimental

1,2-phenylenedi(oxyacetic acid) was prepared by the reaction of chloroacetic acid with odihydroxybenzene (Mirci, 1990 ). All other chemicals were analytical grade reagents and used without further purification. 1,2-phenylenedi (oxyacetic acid) (0.40 g, 2 mmol) and 4,4'-bipyridine (0.31 g, 2 mmol) were dissolved in mixed solution of water (5 ml) and ethanol (5 ml). Colorless rod crystals of title compound were obtained after several days in room temperature.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.97 Å (methylene), C—H = 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C). H atoms O atoms were initially located in a difference Fourier map and treated as riding on their parent atoms, with O—H = 0.85 Å, Uiso(H) = 1.5 Ueq(N/O).

Figures

Fig. 1.
The molecular structure of the title compound with the atom labeling scheme, Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing view, showing the three-dimensional hydrogen bonding supramolecular network. Hydrogen bonds are shown as dashed lines.H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C10H8N2·C10H10O6·H2OF(000) = 840
Mr = 400.38Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11161 reflections
a = 11.566 (5) Åθ = 3.0–27.5°
b = 9.712 (5) ŵ = 0.11 mm1
c = 16.810 (7) ÅT = 291 K
β = 90.81 (2)°Rod, colorless
V = 1888.2 (15) Å30.20 × 0.18 × 0.12 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer4306 independent reflections
Radiation source: fine-focus sealed tube2654 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scanθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −15→14
Tmin = 0.979, Tmax = 0.987k = −12→12
18105 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.0647P)2] where P = (Fo2 + 2Fc2)/3
4306 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.60888 (10)0.06435 (13)0.44070 (7)0.0574 (3)
C10.59235 (13)−0.04189 (17)0.39244 (9)0.0616 (4)
H10.5467−0.02930.34700.074*
C20.63933 (12)−0.16976 (16)0.40627 (8)0.0588 (4)
H20.6265−0.24060.37000.071*
C30.70588 (11)−0.19349 (14)0.47429 (8)0.0462 (3)
C40.72238 (12)−0.08127 (15)0.52468 (9)0.0574 (4)
H40.7662−0.09100.57120.069*
C50.67402 (13)0.04364 (16)0.50574 (9)0.0613 (4)
H50.68730.11750.53990.074*
C60.75714 (11)−0.33068 (14)0.49263 (8)0.0460 (3)
C70.72463 (14)−0.44768 (16)0.45093 (9)0.0662 (4)
H70.6697−0.44160.41010.079*
C80.77316 (14)−0.57246 (17)0.46966 (10)0.0672 (4)
H80.7498−0.64930.44060.081*
C90.88302 (13)−0.47824 (16)0.56821 (9)0.0609 (4)
H90.9375−0.48790.60910.073*
C100.83819 (12)−0.34962 (15)0.55282 (9)0.0579 (4)
H100.8626−0.27480.58320.069*
C110.27722 (11)0.59624 (14)0.26783 (7)0.0458 (3)
C120.32396 (13)0.71838 (15)0.29545 (8)0.0554 (4)
H120.38950.71670.32820.066*
C130.27396 (13)0.84376 (16)0.27477 (9)0.0597 (4)
H130.30610.92560.29350.072*
C140.17787 (14)0.84657 (15)0.22704 (9)0.0594 (4)
H140.14420.93050.21350.071*
C150.12991 (12)0.72505 (14)0.19859 (9)0.0561 (4)
H150.06440.72820.16590.067*
C160.17855 (11)0.59898 (13)0.21839 (8)0.0460 (3)
C170.04541 (11)0.47710 (14)0.13642 (8)0.0495 (3)
H17A0.06940.52760.08970.059*
H17B−0.02080.52390.15870.059*
C180.01249 (11)0.33352 (14)0.11347 (8)0.0479 (3)
C190.41863 (12)0.46231 (15)0.33609 (8)0.0542 (4)
H19A0.40010.50440.38670.065*
H19B0.48180.51350.31300.065*
C200.45447 (12)0.31491 (16)0.34906 (9)0.0548 (4)
N20.85154 (10)−0.58951 (13)0.52696 (7)0.0564 (3)
O10.13736 (8)0.47386 (9)0.19334 (6)0.0545 (3)
O20.05129 (9)0.23016 (10)0.14397 (6)0.0597 (3)
O3−0.06491 (9)0.33379 (10)0.05595 (6)0.0651 (3)
H23−0.08670.25120.04810.098*
O40.32100 (8)0.46709 (9)0.28462 (6)0.0531 (3)
O50.42135 (9)0.21927 (11)0.30849 (7)0.0710 (3)
O60.52702 (9)0.30628 (11)0.40864 (6)0.0709 (3)
H240.55060.22510.41850.106*
O70.17765 (9)0.17334 (11)0.28219 (6)0.0712 (3)
H210.24720.20120.28040.107*
H220.14660.20930.24100.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0485 (7)0.0614 (8)0.0619 (7)0.0020 (6)−0.0057 (6)0.0183 (6)
C10.0563 (9)0.0752 (11)0.0530 (9)0.0049 (8)−0.0126 (7)0.0131 (8)
C20.0600 (9)0.0681 (10)0.0477 (8)0.0021 (7)−0.0126 (7)0.0027 (7)
C30.0390 (7)0.0545 (8)0.0450 (7)−0.0045 (6)−0.0039 (6)0.0072 (6)
C40.0596 (9)0.0545 (9)0.0576 (9)−0.0024 (7)−0.0206 (7)0.0064 (7)
C50.0631 (9)0.0544 (9)0.0659 (10)−0.0012 (7)−0.0148 (8)0.0071 (7)
C60.0416 (7)0.0524 (8)0.0438 (7)−0.0029 (6)−0.0028 (6)0.0038 (6)
C70.0703 (10)0.0606 (10)0.0669 (10)0.0008 (8)−0.0296 (8)−0.0013 (7)
C80.0746 (11)0.0555 (9)0.0707 (10)−0.0005 (8)−0.0216 (9)−0.0062 (8)
C90.0601 (9)0.0614 (10)0.0605 (9)0.0063 (7)−0.0208 (7)−0.0002 (7)
C100.0591 (8)0.0562 (9)0.0578 (9)0.0015 (7)−0.0184 (7)−0.0038 (7)
C110.0460 (7)0.0424 (7)0.0491 (8)0.0020 (6)−0.0019 (6)0.0038 (6)
C120.0569 (8)0.0524 (8)0.0564 (9)−0.0040 (7)−0.0123 (7)−0.0008 (7)
C130.0711 (10)0.0460 (8)0.0619 (9)−0.0055 (7)−0.0024 (8)−0.0063 (7)
C140.0701 (9)0.0429 (8)0.0653 (9)0.0085 (7)−0.0010 (8)−0.0015 (7)
C150.0536 (8)0.0473 (8)0.0673 (9)0.0062 (6)−0.0098 (7)−0.0008 (7)
C160.0434 (7)0.0412 (7)0.0532 (8)0.0010 (6)−0.0036 (6)−0.0006 (6)
C170.0436 (7)0.0486 (8)0.0559 (8)0.0043 (6)−0.0107 (6)0.0010 (6)
C180.0419 (7)0.0512 (8)0.0504 (8)0.0016 (6)−0.0037 (6)0.0006 (6)
C190.0486 (8)0.0563 (9)0.0572 (8)−0.0028 (6)−0.0138 (7)0.0076 (7)
C200.0420 (7)0.0605 (9)0.0615 (9)−0.0020 (7)−0.0072 (7)0.0113 (7)
N20.0542 (7)0.0556 (7)0.0592 (7)0.0048 (6)−0.0051 (6)0.0036 (6)
O10.0508 (5)0.0404 (5)0.0718 (6)0.0025 (4)−0.0210 (5)−0.0003 (4)
O20.0639 (6)0.0475 (6)0.0672 (7)0.0036 (5)−0.0183 (5)0.0005 (5)
O30.0661 (6)0.0540 (6)0.0743 (7)−0.0046 (5)−0.0293 (6)0.0030 (5)
O40.0492 (5)0.0462 (6)0.0635 (6)0.0002 (4)−0.0167 (4)0.0052 (4)
O50.0635 (7)0.0599 (7)0.0888 (8)0.0060 (5)−0.0230 (6)−0.0003 (6)
O60.0665 (7)0.0639 (7)0.0812 (8)0.0023 (5)−0.0319 (6)0.0154 (6)
O70.0797 (7)0.0581 (7)0.0750 (7)−0.0155 (5)−0.0260 (6)0.0135 (5)

Geometric parameters (Å, °)

N1—C11.325 (2)C12—H120.9300
N1—C51.3342 (18)C13—C141.362 (2)
C1—C21.374 (2)C13—H130.9300
C1—H10.9300C14—C151.386 (2)
C2—C31.3885 (18)C14—H140.9300
C2—H20.9300C15—C161.3861 (19)
C3—C41.392 (2)C15—H150.9300
C3—C61.489 (2)C16—O11.3695 (16)
C4—C51.371 (2)C17—O11.4208 (15)
C4—H40.9300C17—C181.495 (2)
C5—H50.9300C17—H17A0.9700
C6—C101.3818 (18)C17—H17B0.9700
C6—C71.384 (2)C18—O21.2105 (16)
C7—C81.370 (2)C18—O31.3083 (16)
C7—H70.9300C19—O41.4136 (15)
C8—N21.3237 (18)C19—C201.505 (2)
C8—H80.9300C19—H19A0.9700
C9—N21.3320 (19)C19—H19B0.9700
C9—C101.376 (2)C20—O51.2113 (18)
C9—H90.9300C20—O61.3002 (16)
C10—H100.9300O3—H230.8499
C11—O41.3803 (17)O6—H240.8500
C11—C121.3812 (19)O7—H210.8499
C11—C161.4025 (18)O7—H220.8501
C12—C131.390 (2)
C1—N1—C5117.34 (13)C14—C13—C12119.87 (13)
N1—C1—C2123.17 (12)C14—C13—H13120.1
N1—C1—H1118.4C12—C13—H13120.1
C2—C1—H1118.4C13—C14—C15120.36 (13)
C1—C2—C3120.17 (14)C13—C14—H14119.8
C1—C2—H2119.9C15—C14—H14119.8
C3—C2—H2119.9C16—C15—C14120.67 (13)
C2—C3—C4116.16 (13)C16—C15—H15119.7
C2—C3—C6122.24 (13)C14—C15—H15119.7
C4—C3—C6121.60 (11)O1—C16—C15124.87 (11)
C5—C4—C3119.96 (12)O1—C16—C11116.23 (11)
C5—C4—H4120.0C15—C16—C11118.90 (12)
C3—C4—H4120.0O1—C17—C18109.80 (10)
N1—C5—C4123.18 (14)O1—C17—H17A109.7
N1—C5—H5118.4C18—C17—H17A109.7
C4—C5—H5118.4O1—C17—H17B109.7
C10—C6—C7115.98 (13)C18—C17—H17B109.7
C10—C6—C3122.33 (12)H17A—C17—H17B108.2
C7—C6—C3121.68 (12)O2—C18—O3124.09 (13)
C8—C7—C6120.14 (13)O2—C18—C17124.94 (12)
C8—C7—H7119.9O3—C18—C17110.98 (11)
C6—C7—H7119.9O4—C19—C20109.62 (11)
N2—C8—C7123.49 (14)O4—C19—H19A109.7
N2—C8—H8118.3C20—C19—H19A109.7
C7—C8—H8118.3O4—C19—H19B109.7
N2—C9—C10122.64 (12)C20—C19—H19B109.7
N2—C9—H9118.7H19A—C19—H19B108.2
C10—C9—H9118.7O5—C20—O6125.43 (14)
C9—C10—C6120.57 (13)O5—C20—C19124.30 (12)
C9—C10—H10119.7O6—C20—C19110.26 (13)
C6—C10—H10119.7C8—N2—C9117.18 (13)
O4—C11—C12124.82 (11)C16—O1—C17116.18 (10)
O4—C11—C16115.56 (11)C18—O3—H23108.1
C12—C11—C16119.61 (11)C11—O4—C19116.26 (10)
C11—C12—C13120.59 (12)C20—O6—H24114.3
C11—C12—H12119.7H21—O7—H22103.2
C13—C12—H12119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H23···N2i0.851.762.6051 (19)173
O6—H24···N10.851.742.5871 (19)176
O7—H21···O50.852.072.8817 (19)160
O7—H22···O20.851.972.7826 (17)161

Symmetry codes: (i) x−1, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2556).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mirci, L. E. (1990). Rom. Patent No. 07 43 205.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soleimannejad, J., Aghabozorg, H., Najafi, S., Nasibipour, M. & Attar Gharamaleki, J. (2009). Acta Cryst. E65, o532–o533. [PMC free article] [PubMed]
  • Yu, B., Wang, X.-Q., Wang, R.-J., Shen, G.-Q. & Shen, D.-Z. (2006). Acta Cryst. E62, o2757–o2758.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography