PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1208.
Published online 2010 April 28. doi:  10.1107/S1600536810015114
PMCID: PMC2979212

An ortho­rhom­bic polymorph of 1-benzyl-1H-benzimidazole

Abstract

The title compound, C14H12N2, in contrast to the previously reported monoclinic polymorph [Lei et al. (2009 [triangle]). Acta Cryst. E65, o2613], crystallizes in the ortho­rhom­bic crystal system. The dihedral angle between the imidazole ring system and the phenyl ring is 76.78 (16)°. Weak C—H(...)N and C—H(...)π inter­actions are observed in the crystal structure.

Related literature

For the synthesis, see: Lionel et al. (1996 [triangle]). For the monoclinic polymorph, see: Lei & Zhou (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1208-scheme1.jpg

Experimental

Crystal data

  • C14H12N2
  • M r = 208.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1208-efi1.jpg
  • a = 6.124 (3) Å
  • b = 7.443 (4) Å
  • c = 23.860 (8) Å
  • V = 1087.6 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur Eos Gemini diffractometer
  • 3168 measured reflections
  • 1886 independent reflections
  • 892 reflections with I > 2σ(I)
  • R int = 0.069

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.148
  • S = 0.98
  • 1886 reflections
  • 154 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015114/hb5418sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015114/hb5418Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Hu Min of Zhengzhou University of Light Industry for the X-ray analysis.

supplementary crystallographic information

Comment

The title compound, 1-benzyl-1H-benzimidazole was first synthesized by Lionel (Lionel et al. 1996) using DMF as solvent.

The structure reported here is an orthorhombic form polymorph of the title compound, (C14H12N2), which has been characterized previously in a monoclinic form (Lei & Zhou, 2009). The bond lengths and angles are closely similar to those previously described . The dihedral angle between the imidazole ring and the benzyl ring is 76.78 (16)°, indicated that those two rings are not mutually perpendicular. In the crystal structure, molecules are linked via weak intermolecular C—H···N interactions, forming a chain along the b-axis direction. The structure is further stabilized by C—H···π contacts involving both of the aromatic rings. This arrangement is similar to that observed in the monoclinic polymorph.

Experimental

The title compound was obtained by reacting benzimidazole (1.18 g, 0.01 mol) with benzyl chloride (1.25 g, 0.01 mol) and potassium carbonate (1.38 g, 0.01 mol) in acetone (50 ml). The reaction mixture was refluxed for 10 h. After removal of the solvents, the residue was dispersed in water to obtain an oil layer. Then the oil was dissolved in hot ethanol/water (2:1) and colourless blocks of (I) arose.

Refinement

The absolute sturcture of (I) is indeterminate in the present refinement. The methylene H atoms were freely refined. The other H atoms were positioned geometrically (C—H = 0.93Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric unit of (I), showing 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing of (I), showing the hydrogen-bonded (dashed lines) network. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.

Crystal data

C14H12N2Dx = 1.272 Mg m3
Mr = 208.26Melting point: 387 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 500 reflections
a = 6.124 (3) Åθ = 3.2–26.2°
b = 7.443 (4) ŵ = 0.08 mm1
c = 23.860 (8) ÅT = 293 K
V = 1087.6 (8) Å3Block, colorless
Z = 40.25 × 0.20 × 0.18 mm
F(000) = 440

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometerRint = 0.069
Radiation source: fine-focus sealed tubeθmax = 26.2°, θmin = 3.2°
graphiteh = −7→7
[var phi] and ω scansk = −9→6
3168 measured reflectionsl = −22→29
1886 independent reflections1886 standard reflections every 0 min
892 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148w = 1/[σ2(Fo2) + (0.0605P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
1886 reflectionsΔρmax = 0.19 e Å3
154 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9512 (6)0.9532 (5)0.13981 (13)0.0379 (9)
C20.9503 (7)1.1255 (6)0.16196 (16)0.0376 (11)
C70.7567 (8)0.8802 (8)0.15157 (18)0.0515 (13)
H70.71900.76390.14110.062*
N20.6248 (7)0.9861 (7)0.17888 (16)0.0614 (13)
C31.1077 (8)1.2581 (7)0.16401 (18)0.0524 (14)
H31.24381.24290.14740.063*
C100.9963 (8)0.9160 (6)0.01210 (18)0.0463 (13)
H100.86890.85670.02240.056*
C91.1566 (7)0.9393 (6)0.05047 (16)0.0379 (11)
C141.3448 (8)1.0270 (7)0.03496 (18)0.0478 (13)
H141.45531.04470.06110.057*
C81.1293 (10)0.8674 (8)0.1093 (2)0.0502 (13)
C131.3702 (9)1.0881 (7)−0.0187 (2)0.0567 (15)
H131.49841.1465−0.02900.068*
C111.0182 (9)0.9782 (7)−0.04190 (18)0.0564 (14)
H110.90570.9624−0.06760.068*
C10.7441 (8)1.1405 (8)0.18669 (18)0.0484 (14)
C50.8491 (14)1.4320 (9)0.2169 (2)0.0766 (19)
H50.81801.53770.23620.092*
C41.0542 (12)1.4117 (8)0.1914 (2)0.0692 (17)
H41.15501.50490.19340.083*
C121.2063 (9)1.0635 (6)−0.05752 (19)0.0570 (15)
H121.22361.1045−0.09410.068*
C60.6953 (10)1.3013 (9)0.21424 (19)0.0647 (17)
H60.55881.31840.23050.078*
H8B1.274 (8)0.887 (6)0.1303 (18)0.058 (15)*
H8A1.078 (7)0.746 (6)0.1111 (16)0.046 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.037 (2)0.043 (2)0.0343 (18)−0.002 (2)0.0042 (18)0.0001 (19)
C20.043 (3)0.047 (3)0.023 (2)0.001 (3)−0.011 (2)0.000 (2)
C70.045 (3)0.057 (3)0.052 (3)−0.010 (3)0.000 (3)0.009 (3)
N20.051 (3)0.081 (3)0.052 (3)0.001 (3)0.008 (2)−0.001 (3)
C30.059 (3)0.051 (3)0.048 (3)−0.005 (3)−0.017 (3)0.004 (3)
C100.051 (3)0.046 (3)0.042 (2)−0.013 (3)0.005 (3)−0.007 (2)
C90.039 (3)0.038 (3)0.037 (2)0.003 (3)−0.001 (3)−0.011 (2)
C140.041 (3)0.054 (3)0.049 (3)−0.003 (3)−0.002 (3)−0.007 (3)
C80.053 (3)0.052 (3)0.045 (3)0.007 (3)0.004 (3)0.005 (3)
C130.054 (3)0.053 (4)0.063 (3)−0.007 (3)0.022 (3)−0.006 (3)
C110.064 (3)0.061 (3)0.044 (3)−0.004 (3)−0.008 (3)−0.003 (3)
C10.048 (3)0.072 (4)0.025 (2)0.021 (3)0.007 (3)0.006 (3)
C50.119 (6)0.069 (4)0.042 (3)0.032 (5)−0.038 (4)−0.026 (3)
C40.095 (5)0.053 (4)0.060 (3)0.003 (3)−0.025 (4)−0.006 (3)
C120.078 (4)0.048 (3)0.045 (3)0.003 (3)0.016 (3)−0.003 (3)
C60.072 (4)0.090 (5)0.032 (3)0.029 (4)0.002 (3)−0.010 (3)

Geometric parameters (Å, °)

N1—C71.339 (6)C14—C131.367 (6)
N1—C21.387 (5)C14—H140.9300
N1—C81.459 (6)C8—H8B1.03 (5)
C2—C31.380 (6)C8—H8A0.96 (5)
C2—C11.398 (6)C13—C121.379 (6)
C7—N21.303 (6)C13—H130.9300
C7—H70.9300C11—C121.367 (6)
N2—C11.374 (6)C11—H110.9300
C3—C41.358 (7)C1—C61.398 (7)
C3—H30.9300C5—C61.356 (8)
C10—C91.354 (5)C5—C41.404 (8)
C10—C111.376 (6)C5—H50.9300
C10—H100.9300C4—H40.9300
C9—C141.375 (6)C12—H120.9300
C9—C81.511 (6)C6—H60.9300
C7—N1—C2107.0 (4)N1—C8—H8A98 (3)
C7—N1—C8126.3 (4)C9—C8—H8A114 (2)
C2—N1—C8126.7 (4)H8B—C8—H8A113 (4)
C3—C2—N1132.2 (4)C14—C13—C12120.1 (5)
C3—C2—C1124.0 (5)C14—C13—H13119.9
N1—C2—C1103.8 (4)C12—C13—H13119.9
N2—C7—N1114.3 (5)C12—C11—C10119.6 (5)
N2—C7—H7122.9C12—C11—H11120.2
N1—C7—H7122.9C10—C11—H11120.2
C7—N2—C1104.1 (4)N2—C1—C6131.7 (5)
C4—C3—C2116.8 (5)N2—C1—C2110.9 (4)
C4—C3—H3121.6C6—C1—C2117.4 (6)
C2—C3—H3121.6C6—C5—C4121.6 (5)
C9—C10—C11121.3 (5)C6—C5—H5119.2
C9—C10—H10119.4C4—C5—H5119.2
C11—C10—H10119.4C3—C4—C5121.1 (6)
C10—C9—C14119.1 (4)C3—C4—H4119.5
C10—C9—C8120.2 (5)C5—C4—H4119.5
C14—C9—C8120.7 (4)C11—C12—C13119.5 (4)
C13—C14—C9120.4 (5)C11—C12—H12120.3
C13—C14—H14119.8C13—C12—H12120.3
C9—C14—H14119.8C5—C6—C1119.2 (6)
N1—C8—C9113.0 (4)C5—C6—H6120.4
N1—C8—H8B110 (2)C1—C6—H6120.4
C9—C8—H8B108 (2)
C7—N1—C2—C3177.5 (5)C14—C9—C8—N1116.5 (6)
C8—N1—C2—C3−2.7 (7)C9—C14—C13—C120.5 (8)
C7—N1—C2—C10.4 (4)C9—C10—C11—C120.8 (7)
C8—N1—C2—C1−179.8 (4)C7—N2—C1—C6−178.1 (4)
C2—N1—C7—N20.5 (5)C7—N2—C1—C21.5 (5)
C8—N1—C7—N2−179.2 (4)C3—C2—C1—N2−178.6 (4)
N1—C7—N2—C1−1.2 (5)N1—C2—C1—N2−1.2 (5)
N1—C2—C3—C4−177.3 (4)C3—C2—C1—C61.1 (6)
C1—C2—C3—C4−0.7 (7)N1—C2—C1—C6178.5 (4)
C11—C10—C9—C140.0 (7)C2—C3—C4—C50.8 (7)
C11—C10—C9—C8−179.2 (5)C6—C5—C4—C3−1.4 (8)
C10—C9—C14—C13−0.6 (7)C10—C11—C12—C13−0.9 (7)
C8—C9—C14—C13178.5 (5)C14—C13—C12—C110.3 (7)
C7—N1—C8—C9106.1 (5)C4—C5—C6—C11.8 (8)
C2—N1—C8—C9−73.7 (6)N2—C1—C6—C5178.0 (5)
C10—C9—C8—N1−64.3 (6)C2—C1—C6—C5−1.6 (7)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···N2i1.03 (5)2.55 (5)3.570 (8)171 (4)
C12—H12···Cg2ii0.932.663.559 (5)162

Symmetry codes: (i) x+1, y, z; (ii) −x, y+5/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5418).

References

  • Lei, G. & Zhou, L. (2009). Acta Cryst. E65, o2613. [PMC free article] [PubMed]
  • Lionel, R. M., Philip, J. F. D. & Gokhan, Y. (1996). Tetrahedron, 52, 9877–9890
  • Oxford Diffraction (2008). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography