PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1080.
Published online 2010 April 14. doi:  10.1107/S1600536810012791
PMCID: PMC2979211

6-Bromo-3-methyl-1H-imidazo[4,5-b]pyridin-2(3H)-one

Abstract

The title compound, C7H6BrN3O, was obtained from the reaction of 6-bromo-1H-imidazo[4,5-b]pyridin-2(3H)-one with methyl iodide. All non-H atoms lie in a common plane [r.m.s deviation = 0.017 (1) Å]. The amino group is a hydrogen-bond donor to the carbonyl group of an inversion-related mol­ecule, the pair of hydrogen bonds giving rise to a hydrogen-bonded dimer.

Related literature

For the synthesis of the title compound, see: Grivas & Lindström (1995 [triangle]); Smolyar et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1080-scheme1.jpg

Experimental

Crystal data

  • C7H6BrN3O
  • M r = 228.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1080-efi1.jpg
  • a = 4.4151 (1) Å
  • b = 9.6004 (2) Å
  • c = 10.5330 (3) Å
  • α = 116.248 (1)°
  • β = 93.074 (2)°
  • γ = 91.687 (1)°
  • V = 399.14 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.10 mm−1
  • T = 293 K
  • 0.36 × 0.17 × 0.10 mm

Data collection

  • Bruker X8 APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.478, T max = 0.630
  • 4790 measured reflections
  • 1401 independent reflections
  • 1199 reflections with I > 2σ(I)
  • R int = 0.027
  • Standard reflections: 0

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.077
  • S = 1.05
  • 1401 reflections
  • 114 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012791/bt5243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012791/bt5243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University Sidi Mohammed Ben Abdallah, the Université Mohammed V-Agdal and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-one reacts with organic compounds to form pharmaceutical active compounds. It is easily methylated; in this study, it is methylated by methyl iodide under catalytic conditions. The mono N-methylated compound (Scheme I) is planar [r.m.s 0.017 (1) Å]. The amino group is hydrogen-bond donor to the carbonyl group of an inversion-related molecule to generate a hydrogen-bonded dimer (Fig. 1).

Experimental

6-Bromo-1H-imidazo[4,5-b]pyridine-2(3H)-thione (1 mmol), potassium carbonate (4 mmol), tetra-n-butylammonium bromide (0.1 mmol) and methyl iodide (2.5 mmol) in DMF (15 ml) were stirred for 48 hours. After completion of reaction (as monitored by TLC), the salt was filtered and the solvent removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using ethyl acetate/hexane (1/2) as eluent. Yellow crystals was isolated when the solvent was allowed to evaporate.

Refinement

Carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The amino H atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N—H = 0.86 (1) Å.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound forming a centrosymmetric dimer at the 50% probability level; H atoms are drawn as spheres of arbitrary radii.

Crystal data

C7H6BrN3OZ = 2
Mr = 228.06F(000) = 224
Triclinic, P1Dx = 1.898 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.4151 (1) ÅCell parameters from 2054 reflections
b = 9.6004 (2) Åθ = 2.4–24.1°
c = 10.5330 (3) ŵ = 5.10 mm1
α = 116.248 (1)°T = 293 K
β = 93.074 (2)°Prism, yellow
γ = 91.687 (1)°0.36 × 0.17 × 0.10 mm
V = 399.14 (2) Å3

Data collection

Bruker X8 APEXII diffractometer1401 independent reflections
Radiation source: fine-focus sealed tube1199 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 24.9°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→4
Tmin = 0.478, Tmax = 0.630k = −11→11
4790 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0493P)2 + 0.0118P] where P = (Fo2 + 2Fc2)/3
1401 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.52 e Å3
1 restraintΔρmin = −0.32 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.91934 (8)0.96903 (4)0.29671 (4)0.04832 (17)
O10.0726 (5)0.3085 (3)0.3562 (3)0.0478 (6)
N10.7410 (6)0.4941 (3)0.1298 (3)0.0393 (6)
N20.4091 (6)0.3574 (3)0.2169 (3)0.0368 (6)
N30.2638 (6)0.5575 (3)0.4045 (3)0.0373 (6)
H30.165 (7)0.603 (4)0.478 (2)0.052 (11)*
C10.8436 (8)0.6389 (4)0.1562 (3)0.0395 (8)
H10.97370.65060.09460.047*
C20.7621 (7)0.7715 (4)0.2724 (3)0.0362 (7)
C30.5682 (7)0.7635 (3)0.3680 (3)0.0357 (7)
H3A0.51570.85170.44620.043*
C40.4584 (7)0.6171 (4)0.3399 (3)0.0332 (7)
C50.5521 (7)0.4890 (4)0.2200 (3)0.0326 (7)
C60.2306 (7)0.3988 (4)0.3293 (3)0.0359 (7)
C70.4409 (9)0.1982 (4)0.1123 (4)0.0532 (10)
H7A0.61410.15770.14060.080*
H7B0.46810.19600.02160.080*
H7C0.26130.13570.10550.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0551 (3)0.0388 (2)0.0537 (3)−0.00649 (16)0.00846 (17)0.02302 (18)
O10.0560 (15)0.0356 (12)0.0502 (14)−0.0057 (11)0.0173 (12)0.0168 (11)
N10.0399 (15)0.0385 (15)0.0382 (15)0.0040 (12)0.0119 (12)0.0146 (13)
N20.0420 (15)0.0298 (13)0.0356 (14)0.0018 (11)0.0087 (12)0.0112 (11)
N30.0406 (16)0.0336 (14)0.0361 (15)0.0011 (12)0.0140 (13)0.0131 (12)
C10.0404 (18)0.0410 (18)0.0380 (18)0.0024 (14)0.0119 (15)0.0175 (16)
C20.0372 (17)0.0328 (16)0.0416 (19)−0.0016 (13)0.0022 (15)0.0194 (15)
C30.0367 (17)0.0305 (16)0.0381 (17)0.0040 (13)0.0074 (14)0.0131 (14)
C40.0294 (16)0.0336 (16)0.0353 (17)0.0032 (13)0.0029 (13)0.0139 (14)
C50.0305 (16)0.0308 (15)0.0344 (16)0.0030 (13)0.0015 (13)0.0126 (13)
C60.0349 (17)0.0367 (17)0.0357 (17)0.0011 (14)0.0064 (14)0.0155 (14)
C70.067 (3)0.0341 (18)0.049 (2)0.0033 (17)0.0166 (19)0.0079 (16)

Geometric parameters (Å, °)

Br1—C21.902 (3)C1—C21.394 (5)
O1—C61.233 (4)C1—H10.9300
N1—C51.313 (4)C2—C31.382 (4)
N1—C11.349 (4)C3—C41.369 (4)
N2—C61.373 (4)C3—H3A0.9300
N2—C51.382 (4)C4—C51.411 (4)
N2—C71.452 (4)C7—H7A0.9600
N3—C61.370 (4)C7—H7B0.9600
N3—C41.381 (4)C7—H7C0.9600
N3—H30.856 (10)
C5—N1—C1114.5 (3)C3—C4—N3134.7 (3)
C6—N2—C5109.8 (2)C3—C4—C5118.7 (3)
C6—N2—C7124.2 (3)N3—C4—C5106.6 (3)
C5—N2—C7126.1 (3)N1—C5—N2126.7 (3)
C6—N3—C4110.0 (3)N1—C5—C4126.5 (3)
C6—N3—H3119 (3)N2—C5—C4106.7 (3)
C4—N3—H3131 (3)O1—C6—N3127.3 (3)
N1—C1—C2122.5 (3)O1—C6—N2125.8 (3)
N1—C1—H1118.7N3—C6—N2106.9 (3)
C2—C1—H1118.7N2—C7—H7A109.5
C3—C2—C1122.1 (3)N2—C7—H7B109.5
C3—C2—Br1119.5 (2)H7A—C7—H7B109.5
C1—C2—Br1118.4 (2)N2—C7—H7C109.5
C4—C3—C2115.6 (3)H7A—C7—H7C109.5
C4—C3—H3A122.2H7B—C7—H7C109.5
C2—C3—H3A122.2
C5—N1—C1—C21.8 (5)C6—N2—C5—C40.2 (3)
N1—C1—C2—C3−0.5 (5)C7—N2—C5—C4−179.4 (3)
N1—C1—C2—Br1−179.4 (2)C3—C4—C5—N10.6 (5)
C1—C2—C3—C4−0.9 (5)N3—C4—C5—N1−179.2 (3)
Br1—C2—C3—C4178.0 (2)C3—C4—C5—N2−179.9 (3)
C2—C3—C4—N3−179.4 (3)N3—C4—C5—N20.3 (3)
C2—C3—C4—C50.8 (4)C4—N3—C6—O1−179.5 (3)
C6—N3—C4—C3179.6 (3)C4—N3—C6—N20.7 (4)
C6—N3—C4—C5−0.6 (3)C5—N2—C6—O1179.7 (3)
C1—N1—C5—N2178.8 (3)C7—N2—C6—O1−0.8 (5)
C1—N1—C5—C4−1.9 (5)C5—N2—C6—N3−0.5 (3)
C6—N2—C5—N1179.6 (3)C7—N2—C6—N3179.0 (3)
C7—N2—C5—N10.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O1i0.86 (1)1.95 (1)2.804 (3)176 (4)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5243).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Grivas, S. & Lindström, S. (1995). J. Heterocycl. Chem.32, 467-471.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smolyar, N. N., Lopatinskaya, Kh. Ya., Vasilechko, A. B., Lomov, D. A. & Yutilov, Yu. M. (2007). Russ. J. Org. Chem.43, 417–421.
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography