PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m554–m555.
Published online 2010 April 21. doi:  10.1107/S1600536810013024
PMCID: PMC2979207

trans-Tetra­aqua­bis{(E)-2-cyano-1-[(ethoxy­carbon­yl)methyl­sulfan­yl]-2-(1-naphthyl­amino­carbon­yl)ethene-1-thiol­ato}calcium(II) diethyl ether disolvate

Abstract

In the title compound, [Ca(C18H15N2O3S2)(H2O)4]·2C4H10O, the Ca atom, which lies on an inversion centre, is coordinated octa­hedrally by four water mol­ecules and two anions of the ketene dithio­acetal, the donor atoms of which are the amidic carbonyl O atoms. The central backbone of the ligands (excluding the naphthalene and oxoethyl groups) is essentially planar (r.m.s. deviation 0.035 Å). Intra­molecular hydrogen bonds are observed from the NH group to the formally ‘thiol­ate’ S atom and from one coordinated water to the nitrile group and to the ether O atom. Inter­molecular hydrogen bonds from the second independent water mol­ecule to the thiol­ate S atom and the side-chain oxo group connect the mol­ecules in chains parallel to the a axis.

Related literature

For our studies exploring the synthetic potential of ketene dithioacetals for synthesizing new classes of novel antimetabolic agents, see: Elgemeie & Sood (2006 [triangle]); Elgemeie et al. (2008 [triangle], 2009 [triangle]). For our reports of successful approaches for the synthesis of mercaptopurine and pyrimidine analogues by the reaction of ketene dithioacetals with active methylene functions, see: Elgemeie (2003 [triangle]); Elgemeie et al. (2004 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m554-scheme1.jpg

Experimental

Crystal data

  • [Ca(C18H15N2O3S2)(H2O)4]·2C4H10O
  • M r = 1003.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m554-efi1.jpg
  • a = 7.8665 (3) Å
  • b = 12.4361 (5) Å
  • c = 13.8045 (6) Å
  • α = 103.692 (4)°
  • β = 99.963 (4)°
  • γ = 101.609 (3)°
  • V = 1250.24 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 100 K
  • 0.4 × 0.3 × 0.1 mm

Data collection

  • Oxford Diffraction Xcalibur Eos diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.970, T max = 1.000
  • 26853 measured reflections
  • 6443 independent reflections
  • 4941 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.070
  • S = 0.96
  • 6443 reflections
  • 326 parameters
  • 18 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Siemens, 1994 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013024/bt5223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013024/bt5223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

During the course of our studies directed toward exploring the synthetic potential of ketene dithioacetals for synthesizing new classes of novel antimetabolic agents (Elgemeie & Sood, 2006; Elgemeie et al., 2008, 2009), we have recently reported various successful approaches for synthesis of mercaptopurine and pyrimidine analogues by the reaction of ketene dithioacetals with active methylene functions (Elgemeie, 2003; Elgemeie et al., 2004, 2007). In conjunction of this work, we report here a novel calcium salt (I) of a ketene dithioacetal. The structure of (I) was established on the basis of its elemental analysis and spectral data (see Experimental). In order to establish unambiguously the structure of the product, the crystal structure was determined. The X-ray analysis confirms the exclusive presence of the form (I) in the solid state (Figure 1).

The structure consists of a calcium ion on an inversion centre, coordinated octahedrally by four water molecules and two anions of the ketene dithioacetal; the latter coordinate via the amidic carbonyl oxygen O1, with Ca—O1 2.2696 (9) Å. The asymmetric unit also contains one molecule of diethyl ether.

Within the ligand, there is presumably extensive delocalization of the negative charge from its formal position at the "thiolate" sulfur S2 through the ligand backbone (see dimensions in Table 1), in which the ten atoms C1, C11–14, C18, N1, O1, S1 and S2 are approximately coplanar (r.m.s. deviation 0.035 Å). The backbone angles C11—C12—C13 and C12—C13—S2 are noticeably wide at 126.43 (9) and 129.48 (11)° respectively. The Ca atom lies 0.862 (1) Å out of the backbone plane,and the naphthalene plane subtends an interplanar angle to this plane of 29.03 (2)°.

Intramolecular hydrogen bonds (Table 2) are observed from the NH function to the formally thiolate sulfur and from a hydrogen of the coordinated water O1W to the nitrile N. Additionally, the ether molecules are connected by a hydrogen bond from the same water to the ether oxygen. Intramolecular H bonds from the second water to the thiolate sulfur and the 2-oxo function connect the molecules to form chains parallel to the a axis (Fig. 2).

Experimental

The IR spectrum revealed the presence of cyano group at 2190 cm-1. The 1H NMR spectrum revealed signals at δ 1.06–1.24 ppm (t, CH3), 2.51 (s, SCH2), 4.08–4.15 (qua, ester CH2) 7.43–8.37 (m, aromatic protons) and 8.40 (br s, NH).

Refinement

NH and OH hydrogens were identified in difference syntheses. The NH hydrogen was refined freely, water H freely but with distance restraints (SADI) to O—H and H···H. Methyl protons were identified in difference syntheses, idealised and allowed to refine as rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip. Other H were included starting from calculated, idealised positions using a riding model with C—H 0.99 Å for methylene groups and 0.95 Å for sp2 carbons. The ethyl group C16/17 is disordered over two positions with occupancies 0.738, 0.262 (4). Similarity restraints to this group were used to improve stability of refinement.

Figures

Fig. 1.
View of the title compound showing ellipsoids at the 50% probability level. Intramolecular hydrogen bonds are indicated by thin dashed lines.
Fig. 2.
Packing diagram of the title compound showing two molecules connected by intermolecular hydrogen bonds (thick dashed lines).

Crystal data

[Ca(C18H15N2O3S2)(H2O)4]·2C4H10OF(000) = 530
Mr = 1003.26Dx = 1.333 Mg m3
Triclinic, P1Melting point = 479–481 K
a = 7.8665 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4361 (5) ÅCell parameters from 11577 reflections
c = 13.8045 (6) Åθ = 2.6–30.8°
α = 103.692 (4)°µ = 0.35 mm1
β = 99.963 (4)°T = 100 K
γ = 101.609 (3)°Irregular tablet, pale yellow
V = 1250.24 (9) Å30.4 × 0.3 × 0.1 mm
Z = 1

Data collection

Oxford Diffraction Xcalibur Eos diffractometer6443 independent reflections
Radiation source: Enhance (Mo) X-ray Source4941 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 16.1419 pixels mm-1θmax = 28.7°, θmin = 2.7°
ω–scanh = −10→10
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −16→16
Tmin = 0.970, Tmax = 1.000l = −18→18
26853 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 0.96w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3
6443 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.30 e Å3
18 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)5.7234 (0.0013) x - 5.6563 (0.0020) y + 7.4193 (0.0030) z = 5.4532 (0.0027)* 0.0098 (0.0008) C1 * 0.0042 (0.0011) C11 * 0.0033 (0.0011) C12 * -0.0107 (0.0010) C13 * 0.0215 (0.0007) C14 * 0.0075 (0.0008) C18 * 0.0664 (0.0009) N1 * -0.0508 (0.0008) O1 * 0.0150 (0.0006) S1 * -0.0662 (0.0006) S2 -0.8620 (0.0010) CaRms deviation of fitted atoms = 0.03517.5293 (0.0008) x - 5.2398 (0.0041) y + 0.8431 (0.0033) z = 1.0859 (0.0024)Angle to previous plane (with approximate esd) = 29.03 ( 0.02 )* -0.0015 (0.0010) C1 * 0.0157 (0.0010) C2 * 0.0006 (0.0010) C3 * -0.0152 (0.0011) C4 * 0.0063 (0.0011) C5 * 0.0109 (0.0011) C6 * -0.0015 (0.0011) C7 * -0.0092 (0.0010) C8 * -0.0036 (0.0011) C9 * -0.0025 (0.0011) C10Rms deviation of fitted atoms = 0.0086
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ca0.00000.50001.00000.01453 (8)
S10.64002 (4)0.90145 (3)0.93054 (2)0.01677 (8)
S20.63380 (4)0.69288 (3)0.76538 (2)0.01590 (8)
O10.25364 (11)0.53927 (7)0.94360 (7)0.0198 (2)
O31.01513 (11)0.87570 (7)0.93853 (7)0.0201 (2)
N10.39935 (14)0.49923 (9)0.81647 (8)0.0156 (2)
H010.471 (2)0.5286 (13)0.7844 (11)0.032 (4)*
N20.36142 (15)0.81149 (9)1.07579 (8)0.0225 (2)
C10.32121 (15)0.37980 (10)0.77809 (9)0.0152 (3)
C20.27106 (16)0.31450 (10)0.84051 (10)0.0173 (3)
H20.29010.34910.91200.021*
C30.19158 (17)0.19658 (11)0.79947 (10)0.0211 (3)
H30.15600.15230.84330.025*
C40.16515 (17)0.14516 (11)0.69724 (10)0.0210 (3)
H40.11020.06560.67060.025*
C50.19573 (17)0.15718 (11)0.52430 (10)0.0236 (3)
H50.14370.07730.49690.028*
C60.24685 (18)0.21949 (12)0.46050 (10)0.0256 (3)
H60.23090.18300.38970.031*
C70.32322 (17)0.33790 (12)0.49968 (10)0.0240 (3)
H70.35800.38130.45500.029*
C80.34779 (17)0.39113 (11)0.60195 (9)0.0193 (3)
H80.39940.47120.62720.023*
C90.21843 (16)0.20880 (10)0.63064 (10)0.0178 (3)
C100.29770 (15)0.32891 (10)0.67054 (9)0.0153 (3)
C110.36103 (16)0.57231 (10)0.89338 (9)0.0143 (2)
C120.44847 (15)0.69477 (10)0.91915 (9)0.0139 (2)
C130.56499 (15)0.75240 (10)0.87132 (9)0.0137 (2)
C140.78632 (16)0.94911 (10)0.85488 (9)0.0147 (2)
H14A0.72230.92130.78180.018*
H14B0.81871.03380.87440.018*
C150.95496 (16)0.90825 (10)0.86744 (9)0.0152 (3)
O21.03244 (11)0.91600 (8)0.78997 (7)0.0246 (2)
C161.1903 (3)0.8657 (3)0.7942 (2)0.0354 (7)0.738 (4)
H16A1.28780.91410.85330.042*0.738 (4)
H16B1.15710.78830.80360.042*0.738 (4)
C171.2505 (3)0.8589 (2)0.69962 (17)0.0436 (8)0.738 (4)
H17A1.35270.82500.70210.065*0.738 (4)
H17B1.28590.93590.69160.065*0.738 (4)
H17C1.15330.81130.64140.065*0.738 (4)
C16'1.2112 (11)0.9059 (6)0.7918 (7)0.029 (2)*0.262 (4)
H16C1.27800.91280.86160.034*0.262 (4)
H16D1.27800.96250.76330.034*0.262 (4)
C17'1.1676 (9)0.7828 (6)0.7206 (5)0.044 (2)*0.262 (4)
H17D1.27880.76090.71390.066*0.262 (4)
H17E1.09960.77940.65290.066*0.262 (4)
H17F1.09670.73010.74990.066*0.262 (4)
C180.40096 (16)0.75993 (10)1.00605 (9)0.0152 (2)
C91−0.0616 (2)0.49289 (14)0.64737 (12)0.0380 (4)
H91A0.03920.49250.70000.057*
H91B−0.15160.52040.68030.057*
H91C−0.01980.54360.60710.057*
C92−0.1421 (2)0.37394 (14)0.57815 (11)0.0314 (3)
H92A−0.24400.37370.52470.038*
H92B−0.05230.34600.54390.038*
O93−0.20128 (13)0.30117 (9)0.63788 (7)0.0283 (2)
C94−0.2807 (2)0.18547 (13)0.57820 (11)0.0332 (4)
H94A−0.19310.15390.54440.040*
H94B−0.38420.18230.52440.040*
C95−0.3405 (2)0.11591 (14)0.64723 (12)0.0375 (4)
H95A−0.42740.14740.68030.056*
H95B−0.23730.11850.69970.056*
H95C−0.39590.03640.60670.056*
O1W−0.17859 (14)0.37346 (9)0.84531 (8)0.0318 (3)
H1W−0.173 (2)0.3536 (15)0.7848 (10)0.051 (6)*
H2W−0.252 (2)0.3209 (14)0.8526 (14)0.064 (7)*
O2W−0.07611 (14)0.64913 (9)0.94233 (8)0.0277 (2)
H3W−0.023 (2)0.7169 (11)0.9595 (12)0.044 (5)*
H4W−0.155 (2)0.6389 (15)0.8925 (11)0.048 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca0.01563 (18)0.01361 (17)0.01734 (18)0.00374 (13)0.00750 (14)0.00726 (13)
S10.01826 (16)0.01288 (15)0.01747 (16)0.00078 (12)0.00818 (12)0.00085 (12)
S20.01890 (16)0.01387 (15)0.01454 (15)0.00153 (12)0.00815 (12)0.00241 (11)
O10.0199 (5)0.0174 (4)0.0240 (5)0.0023 (4)0.0127 (4)0.0061 (4)
O30.0200 (5)0.0161 (4)0.0215 (5)0.0033 (4)−0.0013 (4)0.0058 (4)
N10.0165 (5)0.0134 (5)0.0162 (5)0.0004 (4)0.0076 (4)0.0032 (4)
N20.0280 (6)0.0196 (6)0.0241 (6)0.0076 (5)0.0136 (5)0.0074 (5)
C10.0118 (6)0.0143 (6)0.0184 (6)0.0025 (5)0.0029 (5)0.0036 (5)
C20.0182 (6)0.0168 (6)0.0167 (6)0.0039 (5)0.0037 (5)0.0050 (5)
C30.0216 (7)0.0176 (6)0.0262 (7)0.0036 (5)0.0064 (6)0.0107 (5)
C40.0184 (7)0.0131 (6)0.0277 (7)0.0004 (5)0.0020 (5)0.0038 (5)
C50.0192 (7)0.0198 (7)0.0242 (7)0.0025 (5)0.0018 (6)−0.0037 (5)
C60.0244 (7)0.0304 (8)0.0165 (7)0.0049 (6)0.0045 (6)−0.0017 (6)
C70.0243 (7)0.0288 (7)0.0189 (7)0.0048 (6)0.0079 (6)0.0063 (6)
C80.0201 (7)0.0181 (6)0.0179 (6)0.0017 (5)0.0056 (5)0.0032 (5)
C90.0133 (6)0.0166 (6)0.0211 (7)0.0035 (5)0.0022 (5)0.0022 (5)
C100.0111 (6)0.0168 (6)0.0166 (6)0.0032 (5)0.0024 (5)0.0031 (5)
C110.0129 (6)0.0166 (6)0.0142 (6)0.0043 (5)0.0035 (5)0.0050 (5)
C120.0128 (6)0.0154 (6)0.0135 (6)0.0036 (5)0.0041 (5)0.0030 (5)
C130.0121 (6)0.0143 (6)0.0135 (6)0.0034 (5)0.0013 (5)0.0029 (5)
C140.0165 (6)0.0130 (6)0.0155 (6)0.0029 (5)0.0051 (5)0.0050 (5)
C150.0152 (6)0.0091 (5)0.0174 (6)−0.0010 (5)0.0025 (5)0.0008 (5)
O20.0161 (5)0.0383 (6)0.0213 (5)0.0076 (4)0.0079 (4)0.0089 (4)
C160.0198 (12)0.055 (2)0.0368 (14)0.0198 (14)0.0121 (10)0.0105 (15)
C170.0438 (15)0.0669 (19)0.0368 (13)0.0383 (13)0.0182 (11)0.0195 (12)
C180.0151 (6)0.0138 (6)0.0184 (6)0.0032 (5)0.0056 (5)0.0072 (5)
C910.0465 (10)0.0441 (10)0.0394 (9)0.0246 (8)0.0220 (8)0.0223 (8)
C920.0300 (8)0.0499 (10)0.0230 (7)0.0173 (7)0.0103 (6)0.0173 (7)
O930.0310 (6)0.0366 (6)0.0186 (5)0.0095 (4)0.0078 (4)0.0078 (4)
C940.0259 (8)0.0439 (9)0.0240 (8)0.0094 (7)0.0017 (6)0.0011 (7)
C950.0320 (9)0.0389 (9)0.0366 (9)0.0044 (7)0.0073 (7)0.0056 (7)
O1W0.0370 (6)0.0330 (6)0.0181 (5)−0.0079 (5)0.0103 (5)0.0050 (5)
O2W0.0291 (6)0.0183 (5)0.0353 (6)0.0044 (4)0.0007 (5)0.0133 (5)

Geometric parameters (Å, °)

Ca—O12.2696 (9)N1—H010.855 (16)
Ca—O2W2.3265 (10)C2—H20.9500
Ca—O1W2.3434 (10)C3—H30.9500
S1—C131.7686 (12)C4—H40.9500
S1—C141.7891 (12)C5—H50.9500
S2—C131.7037 (12)C6—H60.9500
O1—C111.2494 (14)C7—H70.9500
O3—C151.2064 (15)C8—H80.9500
N1—C111.3448 (15)C14—H14A0.9900
N1—C11.4184 (15)C14—H14B0.9900
N2—C181.1518 (16)C16—H16A0.9900
C1—C21.3702 (17)C16—H16B0.9900
C1—C101.4325 (17)C17—H17A0.9800
C2—C31.4063 (17)C17—H17B0.9800
C3—C41.3643 (18)C17—H17C0.9800
C4—C91.4113 (18)C16'—H16C0.9900
C5—C61.3631 (19)C16'—H16D0.9900
C5—C91.4199 (18)C17'—H17D0.9800
C6—C71.4059 (19)C17'—H17E0.9800
C7—C81.3713 (17)C17'—H17F0.9800
C8—C101.4156 (17)C91—H91A0.9800
C9—C101.4284 (16)C91—H91B0.9800
C11—C121.4684 (16)C91—H91C0.9800
C12—C131.3996 (17)C92—H92A0.9900
C12—C181.4325 (17)C92—H92B0.9900
C14—C151.5105 (17)C94—H94A0.9900
C15—O21.3323 (15)C94—H94B0.9900
O2—C16'1.433 (9)C95—H95A0.9800
O2—C161.497 (3)C95—H95B0.9800
C16—C171.455 (3)C95—H95C0.9800
C16'—C17'1.545 (8)O1W—H1W0.824 (13)
C91—C921.499 (2)O1W—H2W0.820 (13)
C92—O931.4255 (17)O2W—H3W0.819 (13)
O93—C941.4277 (17)O2W—H4W0.810 (13)
C94—C951.503 (2)
O1i—Ca—O1180.0C9—C5—H5119.2
O1—Ca—O2Wi92.96 (4)C5—C6—H6120.1
O1i—Ca—O2W92.96 (4)C7—C6—H6120.1
O1—Ca—O2W87.04 (4)C8—C7—H7119.8
O2Wi—Ca—O2W180.0C6—C7—H7119.8
O1—Ca—O1Wi83.15 (3)C7—C8—H8119.4
O2W—Ca—O1Wi91.93 (4)C10—C8—H8119.4
O1i—Ca—O1W83.15 (4)C15—C14—H14A109.0
O1—Ca—O1W96.85 (3)S1—C14—H14A109.0
O2Wi—Ca—O1W91.93 (4)C15—C14—H14B109.0
O2W—Ca—O1W88.07 (4)S1—C14—H14B109.0
O1Wi—Ca—O1W180.0H14A—C14—H14B107.8
C13—S1—C14103.00 (6)C17—C16—H16A109.8
C11—O1—Ca161.36 (9)O2—C16—H16A109.8
C11—N1—C1126.41 (11)C17—C16—H16B109.8
C2—C1—N1122.01 (11)O2—C16—H16B109.8
C2—C1—C10120.73 (11)H16A—C16—H16B108.2
N1—C1—C10117.26 (11)C16—C17—H17A109.5
C1—C2—C3120.42 (12)C16—C17—H17B109.5
C4—C3—C2120.61 (12)H17A—C17—H17B109.5
C3—C4—C9120.80 (12)C16—C17—H17C109.5
C6—C5—C9121.59 (12)H17A—C17—H17C109.5
C5—C6—C7119.90 (12)H17B—C17—H17C109.5
C8—C7—C6120.40 (13)O2—C16'—H16C112.1
C7—C8—C10121.21 (12)C17'—C16'—H16C112.1
C4—C9—C5122.03 (12)O2—C16'—H16D112.1
C4—C9—C10119.51 (11)C17'—C16'—H16D112.1
C5—C9—C10118.46 (12)H16C—C16'—H16D109.7
C8—C10—C9118.44 (11)C16'—C17'—H17D109.5
C8—C10—C1123.63 (11)C16'—C17'—H17E109.5
C9—C10—C1117.93 (11)H17D—C17'—H17E109.5
O1—C11—N1122.08 (11)C16'—C17'—H17F109.5
O1—C11—C12119.03 (11)H17D—C17'—H17F109.5
N1—C11—C12118.89 (11)H17E—C17'—H17F109.5
C13—C12—C18118.58 (11)C92—C91—H91A109.5
C13—C12—C11129.48 (11)C92—C91—H91B109.5
C18—C12—C11111.94 (10)H91A—C91—H91B109.5
C12—C13—S2126.43 (9)C92—C91—H91C109.5
C12—C13—S1113.61 (9)H91A—C91—H91C109.5
S2—C13—S1119.95 (7)H91B—C91—H91C109.5
C15—C14—S1113.08 (9)O93—C92—H92A109.9
O3—C15—O2124.07 (12)C91—C92—H92A109.9
O3—C15—C14125.39 (12)O93—C92—H92B109.9
O2—C15—C14110.52 (10)C91—C92—H92B109.9
C15—O2—C16'122.7 (4)H92A—C92—H92B108.3
C15—O2—C16112.09 (14)O93—C94—H94A109.9
C16'—O2—C1619.7 (3)C95—C94—H94A109.9
C17—C16—O2109.5 (2)O93—C94—H94B109.9
O2—C16'—C17'98.6 (5)C95—C94—H94B109.9
N2—C18—C12179.36 (14)H94A—C94—H94B108.3
O93—C92—C91108.82 (12)C94—C95—H95A109.5
C92—O93—C94112.91 (11)C94—C95—H95B109.5
O93—C94—C95109.05 (12)H95A—C95—H95B109.5
C11—N1—H01116.6 (10)C94—C95—H95C109.5
C1—N1—H01116.8 (10)H95A—C95—H95C109.5
C1—C2—H2119.8H95B—C95—H95C109.5
C3—C2—H2119.8Ca—O1W—H1W138.0 (12)
C4—C3—H3119.7Ca—O1W—H2W113.9 (13)
C2—C3—H3119.7H1W—O1W—H2W105.2 (16)
C3—C4—H4119.6Ca—O2W—H3W129.2 (12)
C9—C4—H4119.6Ca—O2W—H4W122.9 (13)
C6—C5—H5119.2H3W—O2W—H4W107.1 (16)
O1i—Ca—O1—C1171 (6)Ca—O1—C11—C1279.9 (3)
O2Wi—Ca—O1—C11153.0 (3)C1—N1—C11—O13.5 (2)
O2W—Ca—O1—C11−27.0 (3)C1—N1—C11—C12−176.62 (11)
O1Wi—Ca—O1—C11−119.3 (3)O1—C11—C12—C13−176.38 (12)
O1W—Ca—O1—C1160.7 (3)N1—C11—C12—C133.71 (19)
C11—N1—C1—C2−34.63 (18)O1—C11—C12—C183.10 (16)
C11—N1—C1—C10145.94 (12)N1—C11—C12—C18−176.80 (11)
N1—C1—C2—C3179.07 (11)C18—C12—C13—S2−177.98 (9)
C10—C1—C2—C3−1.52 (19)C11—C12—C13—S21.48 (19)
C1—C2—C3—C40.79 (19)C18—C12—C13—S11.28 (15)
C2—C3—C4—C90.62 (19)C11—C12—C13—S1−179.27 (10)
C9—C5—C6—C7−0.3 (2)C14—S1—C13—C12178.99 (9)
C5—C6—C7—C80.4 (2)C14—S1—C13—S2−1.70 (9)
C6—C7—C8—C100.1 (2)C13—S1—C14—C15−68.69 (9)
C3—C4—C9—C5178.77 (13)S1—C14—C15—O3−20.07 (15)
C3—C4—C9—C10−1.27 (19)S1—C14—C15—O2161.69 (8)
C6—C5—C9—C4179.68 (13)O3—C15—O2—C16'−11.5 (4)
C6—C5—C9—C10−0.29 (19)C14—C15—O2—C16'166.8 (3)
C7—C8—C10—C9−0.74 (19)O3—C15—O2—C167.3 (2)
C7—C8—C10—C1179.59 (12)C14—C15—O2—C16−174.45 (16)
C4—C9—C10—C8−179.15 (12)C15—O2—C16—C17170.4 (2)
C5—C9—C10—C80.82 (17)C16'—O2—C16—C17−63.0 (12)
C4—C9—C10—C10.53 (17)C15—O2—C16'—C17'103.4 (5)
C5—C9—C10—C1−179.50 (12)C16—O2—C16'—C17'41.3 (9)
C2—C1—C10—C8−179.49 (12)C13—C12—C18—N2162 (14)
N1—C1—C10—C8−0.05 (18)C11—C12—C18—N2−17 (14)
C2—C1—C10—C90.84 (17)C91—C92—O93—C94179.86 (11)
N1—C1—C10—C9−179.72 (10)C92—O93—C94—C95−179.38 (12)
Ca—O1—C11—N1−100.2 (3)

Symmetry codes: (i) −x, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H01···S20.855 (16)2.279 (16)3.0274 (11)146.2 (14)
O1W—H1W···O930.82 (1)1.94 (1)2.7531 (14)171 (2)
O1W—H2W···N2i0.82 (1)2.22 (1)2.9902 (15)157 (2)
O2W—H3W···O3ii0.82 (1)2.03 (1)2.7797 (13)151 (2)
O2W—H4W···S2ii0.81 (1)2.51 (1)3.2666 (11)157 (2)

Symmetry codes: (i) −x, −y+1, −z+2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5223).

References

  • Elgemeie, G. H. (2003). Curr. Pharm. Des.9, 2627–2642. [PubMed]
  • Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2004). Synth. Commun.34, 3281–3291.
  • Elgemeie, G. H., Elghandour, A. H. & Abd Elaziz, G. W. (2007). Synth. Commun.37, 2827–2834.
  • Elgemeie, G. H. & Sood, S. A. (2006). Synth. Commun.36, 743–753.
  • Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2008). J. Carbohydr. Chem.27, 345–361.
  • Elgemeie, G. H., Zaghary, W. A., Amin, K. M. & Nasr, T. M. (2009). J. Carbohydr. Chem.28, 161–180.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography