PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1074.
Published online 2010 April 14. doi:  10.1107/S1600536810012973
PMCID: PMC2979205

[1-(Carboxy­meth­yl)cyclo­hexyl]­methan­aminium dihydrogen phosphate

Abstract

In the title salt, C9H18NO2 +·H2PO4 , the cyclo­hexane ring is puckered, the total puckering amplitude Q T being 0.555 (4) Å, and an intra­molecular N—H(...)O hydrogen bond generates an S(7) ring. In the crystal structure, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds lead to R 2 2(14), R 3 3(8) and R 4 2(8) rings, generating a two-dimensional layer.

Related literature

For related structures and medicinal background, see: Reece & Levendis (2008 [triangle]); Ibers (2001 [triangle]). For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995 [triangle]). For details of ring-puckering analysis, see: Cremer & Pople (1975 [triangle]). For bond-valence analysis and the positioning of H atoms, see: Brese & O’Keeffe (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1074-scheme1.jpg

Experimental

Crystal data

  • C9H18NO2 +·H2O4P
  • M r = 269.23
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1074-efi3.jpg
  • a = 10.473 (5) Å
  • b = 9.269 (3) Å
  • c = 26.468 (5) Å
  • V = 2569.4 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 296 K
  • 0.31 × 0.25 × 0.22 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • 14659 measured reflections
  • 3185 independent reflections
  • 1853 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.155
  • S = 1.06
  • 3185 reflections
  • 178 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012973/hb5398sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012973/hb5398Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

IUK thanks the Higher Education Commission of Pakistan for financial support under the project ‘Strengthening of the Materials Chemistry Laboratory’ at GCUL.

supplementary crystallographic information

Comment

The title compound is a salt of gabapentin (Ibers, 2001; Reece & Levendis, 2008) an antiepileptic drug has potential application in treatment of neuropathic pain. Herein we report the synthesis and crystal structure of title compound (I).

The molecular structure and atom-labelling scheme are shown in Fig. 1. Selected bond distances and angles are given in Table 1. The C9—O6 bond length [1.310 (4) Å] indicate significant single-bond character, whereas the C9—O5 bond length [1.213 (3) Å] is indicative of significant double-bond character. The cyclohexane ring exhibits a puckered conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.0246 (42) Å, q3 = 0.5544 (42) Å, QT = 0.5547 (42) Å, [var phi] = 318 (10)° and θ = 1.81 (43)°. The O—P—O angles lie in the range 106.35 (14)–115.00 (12)°. Linkages P1—O1 and P1—O2 constitute POH groups, as confirmed both by the location of H atoms in the difference Fourier maps and by bond-valence calculations (Brese & O'Keeffe, 1991).

The atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O5iv so forming a centrosymmetric R22(14) ring (Bernstein et al., 1995) centred at (1/2, 0, 1/2). The combination of N—H···O and O—H···O hydrogen bonds generates R33(8) and R42(8) rings parallel to the [010] direction (Fig. 2).

Experimental

To a 10 ml methanolic solution (0.002 M) of gabapentin was added 4 drops of phosphoric acid (85%). The mixture was heated and stirred for 30 min. Colourless prisms of (I) were obtained by slow evaporation from methanol.

Refinement

All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms. Other H atoms bound to N and O atoms were located in difference maps and refined subject to a DFIX restraint of O—H = 0.82 (2) Å and N—H = 0.87 (2) Å.

Figures

Fig. 1.
A view of one molecule of (I), showing displacement ellipsoids drawn at the 30% probability level. Hydrogen bonds are indicated by dashed lines.
Fig. 2.
Part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet built from R33(8) and R42(8) rings. For the sake of clarity, H atoms not involved in the motif shown have been omitted.

Crystal data

C9H18NO2+·H2O4PF(000) = 1152
Mr = 269.23Dx = 1.392 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1923 reflections
a = 10.473 (5) Åθ = 3.0–21.6°
b = 9.269 (3) ŵ = 0.23 mm1
c = 26.468 (5) ÅT = 296 K
V = 2569.4 (16) Å3Prism, colourless
Z = 80.31 × 0.25 × 0.22 mm

Data collection

Bruker Kappa APEXII CCD diffractometer1853 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
graphiteθmax = 28.3°, θmin = 1.5°
[var phi] and ω scansh = −13→7
14659 measured reflectionsk = −11→12
3185 independent reflectionsl = −35→35

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0712P)2] where P = (Fo2 + 2Fc2)/3
3185 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = −0.45 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6575 (4)0.1582 (5)0.67421 (15)0.0667 (12)
H1A0.65690.23150.64810.080*
H1B0.74570.13340.68120.080*
C20.5874 (3)0.0253 (4)0.65538 (12)0.0413 (8)
H2A0.5967−0.05140.68010.050*
H2B0.6266−0.00700.62420.050*
C30.4441 (3)0.0522 (3)0.64599 (10)0.0301 (7)
C40.3859 (4)0.1206 (4)0.69378 (12)0.0477 (9)
H4A0.29830.14740.68660.057*
H4B0.38420.04850.72040.057*
C50.4563 (4)0.2527 (4)0.71319 (15)0.0667 (12)
H5A0.44890.33030.68880.080*
H5B0.41780.28470.74460.080*
C60.5961 (5)0.2189 (6)0.72201 (16)0.0874 (16)
H6A0.60390.14920.74920.105*
H6B0.64060.30610.73210.105*
C70.4205 (3)0.1584 (3)0.60270 (11)0.0329 (7)
H7A0.32930.16390.59660.040*
H7B0.44870.25330.61330.040*
C80.3736 (3)−0.0923 (3)0.63691 (13)0.0445 (9)
H8A0.3624−0.13950.66930.053*
H8B0.2891−0.07050.62390.053*
C90.4354 (3)−0.1977 (3)0.60166 (12)0.0343 (7)
N10.4845 (2)0.1225 (3)0.55463 (9)0.0296 (6)
H30.5685 (19)0.141 (4)0.5561 (14)0.067 (12)*
H40.473 (4)0.027 (2)0.5469 (13)0.069 (13)*
H50.454 (3)0.173 (4)0.5291 (11)0.066 (12)*
O50.4571 (2)−0.1736 (2)0.55742 (8)0.0417 (6)
O60.4610 (3)−0.3214 (3)0.62334 (10)0.0537 (7)
H60.500 (4)−0.373 (4)0.6027 (13)0.085 (15)*
O10.8667 (2)0.1053 (2)0.47674 (8)0.0366 (5)
H10.929 (3)0.066 (4)0.4646 (16)0.091 (16)*
O20.7236 (2)−0.0726 (2)0.51893 (10)0.0413 (6)
H20.739 (5)−0.149 (3)0.5316 (16)0.102 (18)*
O30.92807 (17)−0.00007 (19)0.56151 (7)0.0279 (5)
O40.74292 (18)0.17523 (19)0.55177 (8)0.0324 (5)
P10.81774 (6)0.05253 (7)0.52950 (3)0.0242 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.050 (2)0.093 (3)0.057 (2)−0.009 (2)−0.0153 (19)−0.020 (2)
C20.0434 (18)0.050 (2)0.0308 (17)0.0091 (16)−0.0039 (14)0.0055 (15)
C30.0353 (15)0.0273 (16)0.0277 (16)0.0039 (13)0.0068 (13)−0.0017 (12)
C40.064 (2)0.045 (2)0.0339 (19)0.0084 (18)0.0157 (17)−0.0015 (16)
C50.094 (3)0.063 (3)0.043 (2)0.002 (2)0.006 (2)−0.0247 (19)
C60.101 (4)0.106 (4)0.055 (3)−0.017 (3)−0.016 (3)−0.035 (3)
C70.0310 (15)0.0361 (18)0.0317 (16)0.0113 (13)0.0044 (13)0.0009 (13)
C80.0446 (19)0.0364 (19)0.052 (2)−0.0021 (15)0.0225 (17)−0.0022 (15)
C90.0320 (16)0.0271 (17)0.044 (2)−0.0051 (13)0.0077 (14)−0.0016 (14)
N10.0291 (14)0.0331 (16)0.0265 (14)0.0046 (12)0.0017 (11)0.0030 (12)
O50.0501 (14)0.0350 (13)0.0399 (14)0.0027 (10)0.0078 (11)−0.0013 (10)
O60.0788 (18)0.0353 (15)0.0471 (15)0.0119 (13)0.0221 (14)0.0026 (12)
O10.0325 (11)0.0383 (12)0.0391 (13)0.0121 (10)0.0096 (10)0.0117 (10)
O20.0331 (11)0.0184 (12)0.0724 (17)−0.0029 (9)−0.0180 (11)0.0081 (11)
O30.0233 (9)0.0249 (10)0.0356 (11)0.0022 (8)0.0001 (8)0.0001 (9)
O40.0273 (10)0.0182 (10)0.0516 (13)0.0048 (8)0.0121 (9)0.0033 (9)
P10.0193 (3)0.0157 (4)0.0377 (4)0.0022 (3)0.0025 (3)0.0031 (3)

Geometric parameters (Å, °)

C1—C21.519 (5)C7—N11.476 (4)
C1—C61.526 (6)C7—H7A0.9700
C1—H1A0.9700C7—H7B0.9700
C1—H1B0.9700C8—C91.498 (4)
C2—C31.541 (4)C8—H8A0.9700
C2—H2A0.9700C8—H8B0.9700
C2—H2B0.9700C9—O51.213 (3)
C3—C71.531 (4)C9—O61.310 (4)
C3—C41.541 (4)N1—H30.897 (18)
C3—C81.549 (4)N1—H40.912 (18)
C4—C51.519 (5)N1—H50.881 (18)
C4—H4A0.9700O6—H60.83 (4)
C4—H4B0.9700O1—P11.566 (2)
C5—C61.515 (6)O1—H10.817 (19)
C5—H5A0.9700O2—P11.548 (2)
C5—H5B0.9700O2—H20.799 (19)
C6—H6A0.9700O3—P11.513 (2)
C6—H6B0.9700O4—P11.502 (2)
C2—C1—C6111.5 (3)C5—C6—H6B109.5
C2—C1—H1A109.3C1—C6—H6B109.5
C6—C1—H1A109.3H6A—C6—H6B108.1
C2—C1—H1B109.3N1—C7—C3115.2 (2)
C6—C1—H1B109.3N1—C7—H7A108.5
H1A—C1—H1B108.0C3—C7—H7A108.5
C1—C2—C3113.1 (3)N1—C7—H7B108.5
C1—C2—H2A109.0C3—C7—H7B108.5
C3—C2—H2A109.0H7A—C7—H7B107.5
C1—C2—H2B109.0C9—C8—C3117.0 (2)
C3—C2—H2B109.0C9—C8—H8A108.0
H2A—C2—H2B107.8C3—C8—H8A108.0
C7—C3—C2112.5 (2)C9—C8—H8B108.0
C7—C3—C4106.6 (2)C3—C8—H8B108.0
C2—C3—C4108.6 (3)H8A—C8—H8B107.3
C7—C3—C8111.3 (3)O5—C9—O6123.0 (3)
C2—C3—C8110.5 (3)O5—C9—C8124.2 (3)
C4—C3—C8107.1 (2)O6—C9—C8112.7 (3)
C5—C4—C3114.7 (3)C7—N1—H3111 (2)
C5—C4—H4A108.6C7—N1—H4111 (2)
C3—C4—H4A108.6H3—N1—H4109 (3)
C5—C4—H4B108.6C7—N1—H5112 (2)
C3—C4—H4B108.6H3—N1—H5107 (3)
H4A—C4—H4B107.6H4—N1—H5107 (3)
C6—C5—C4110.7 (3)C9—O6—H6109 (3)
C6—C5—H5A109.5P1—O1—H1118 (3)
C4—C5—H5A109.5P1—O2—H2118 (3)
C6—C5—H5B109.5O4—P1—O3115.00 (12)
C4—C5—H5B109.5O4—P1—O2107.84 (12)
H5A—C5—H5B108.1O3—P1—O2110.23 (12)
C5—C6—C1110.8 (3)O4—P1—O1106.50 (11)
C5—C6—H6A109.5O3—P1—O1110.49 (12)
C1—C6—H6A109.5O2—P1—O1106.35 (14)
C6—C1—C2—C355.9 (4)C2—C1—C6—C5−56.5 (5)
C1—C2—C3—C765.8 (4)C2—C3—C7—N153.0 (4)
C1—C2—C3—C4−51.9 (4)C4—C3—C7—N1172.0 (3)
C1—C2—C3—C8−169.2 (3)C8—C3—C7—N1−71.5 (3)
C7—C3—C4—C5−69.4 (4)C7—C3—C8—C980.2 (3)
C2—C3—C4—C552.0 (4)C2—C3—C8—C9−45.5 (4)
C8—C3—C4—C5171.4 (3)C4—C3—C8—C9−163.7 (3)
C3—C4—C5—C6−54.9 (4)C3—C8—C9—O5−61.3 (4)
C4—C5—C6—C155.2 (5)C3—C8—C9—O6120.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6···O3i0.83 (4)1.77 (2)2.602 (3)173 (4)
O1—H1···O3ii0.82 (2)1.76 (2)2.569 (3)173 (5)
N1—H5···O1iii0.88 (2)2.26 (3)2.929 (4)133 (3)
N1—H5···O2iv0.88 (2)2.44 (3)2.959 (3)118 (3)
N1—H5···O5iv0.88 (2)2.47 (3)3.065 (3)125 (3)
N1—H4···O50.91 (2)1.89 (2)2.760 (4)158 (3)
N1—H3···O40.90 (2)1.86 (2)2.752 (3)174 (3)

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+2, −y, −z+1; (iii) x−1/2, −y+1/2, −z+1; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5398).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Ibers, J. A. (2001). Acta Cryst. C57, 641–643. [PubMed]
  • Reece, H. A. & Levendis, D. C. (2008). Acta Cryst. C64, o105–o108. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography