PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1101.
Published online 2010 April 17. doi:  10.1107/S1600536810012882
PMCID: PMC2979203

Dimethyl 4-eth­oxy-1-(4-methyl-2-pyri­dyl)-5-oxo-2,5-dihydro-1H-pyrrole-2,3-dicarboxyl­ate

Abstract

In the title compound, C16H18N2O6, the dihedral angle between the aromatic ring planes is 8.11 (6)°. One of the O atoms is disordered over two sites of equal occupancy. In the crystal structure, aromatic π–π stacking [centroid-to-centroid separation = 3.5503 (8) Å] helps to consolidate the packing.

Related literature

For background on 3-pyrrolines as synthetic inter­mediates, see: Tarnchompoo et al. (1987 [triangle]); Bienz et al. (1989 [triangle]). For further synthetic details, see: Anary-Abbasinejad et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1101-scheme1.jpg

Experimental

Crystal data

  • C16H18N2O6
  • M r = 334.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1101-efi1.jpg
  • a = 9.2674 (6) Å
  • b = 9.4219 (6) Å
  • c = 10.7650 (7) Å
  • α = 87.692 (2)°
  • β = 72.037 (1)°
  • γ = 61.797 (1)°
  • V = 781.73 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 120 K
  • 0.22 × 0.19 × 0.15 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.976, T max = 0.984
  • 14075 measured reflections
  • 4340 independent reflections
  • 3811 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.119
  • S = 1.00
  • 4340 reflections
  • 231 parameters
  • 8 restraints
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012882/hb5395sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012882/hb5395Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Islamic Azad University, Yazd Branch, for supporting this work.

supplementary crystallographic information

Comment

(N-Substituted 3-pyrrolines serve as useful synthetic intermediates (Tarnchompoo et al., 1987; Bienz et al., 1989). Recently we reported a one-pot procedure for the synthesis of some dialkyl N-(3-methyl-2-pyridyl)-4-ethoxy-5-oxo-2,5-dihydro-1H- pyrole-2,3-dicarboxylate derivatives (Anary-Abbasinejad et al., 2010).

Here we report the synthesis and crystal structure of the title compound, (I). It is rational to assume that compound 1 (Fig. 1) is produced from the initial production of ylide intermediate produced from three-component reaction of DMAD, 4-methyl-2-aminopyridine and triphenylphosphine, which then reacted with ethyl chlorooxoacetate to produce an oxamate derivative that underwent intramolecular Wittig reaction to give the products. Crystal packing of I is shown in Fig. 2. A considerable feature of the compound (I) is the presence of π–π stacking interactions between six and five membered rings (Fig. 3) with distance 3.5503 (8) Å for Cg2···Cg3 (Cg2 = N1/C10–C17 and Cg3 = N2/C9–C12).

Experimental

To a magnetically stirred solution of PPh3 (0.26 g, 1 mmol) and 4-methyl-2-aminopyridine (0.9 g, 1 mmol) in CH2Cl2(10 ml) was added drop-wise a mixture of dimethyl acetylenedicarboxylate DMAD (0.14 g, 1 mmol) in CH2Cl2 (3 ml) at room temperature over 2 min. The reaction mixture was then stirred for one more minute, then triethylamine (1 mmol) and ethyl chlorooxoacetate (1 mmol) was added and the reaction mixture was stirred for more 24 h. Solvent was evaporated and the residue was purified by column chromatography on SiO2 using EtOAC–hexane (1:4) mixture as eluent. The solid formed was filtrated, recrystallised from dichloromethane/ethanol (2:1) to yield colourless prisms of (I).

Refinement

The H(C) atoms were placed in calculated positions and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I). Atoms are represented by 50% displacement ellipsoids. The occupancies of positions of disordered O6 atom are equal (0.5).
Fig. 2.
The overview of I crystal packing. Atoms are represented by spheres.
Fig. 3.
Representation of π–π stacking in I.

Crystal data

C16H18N2O6Z = 2
Mr = 334.32F(000) = 352
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2674 (6) ÅCell parameters from 259 reflections
b = 9.4219 (6) Åθ = 3–29°
c = 10.7650 (7) ŵ = 0.11 mm1
α = 87.692 (2)°T = 120 K
β = 72.037 (1)°Prism, colourless
γ = 61.797 (1)°0.22 × 0.19 × 0.15 mm
V = 781.73 (9) Å3

Data collection

Bruker SMART 1000 CCD diffractometer4340 independent reflections
Radiation source: fine-focus sealed tube3811 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 29.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −12→12
Tmin = 0.976, Tmax = 0.984k = −13→13
14075 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0685P)2 + 0.3063P] where P = (Fo2 + 2Fc2)/3
4340 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.37 e Å3
8 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.17590 (10)0.52219 (10)0.39546 (8)0.02303 (17)
O20.40451 (10)0.95161 (9)0.14840 (8)0.02268 (17)
O30.51098 (11)0.79492 (10)0.29618 (8)0.02475 (18)
N10.71510 (11)0.58162 (11)−0.02268 (9)0.01973 (18)
O4−0.06090 (10)0.84294 (10)0.37603 (9)0.02895 (19)
O50.54578 (10)0.30748 (9)0.25074 (8)0.02478 (18)
N20.52930 (11)0.53670 (10)0.15196 (8)0.01807 (17)
C80.44689 (12)0.82101 (12)0.21038 (10)0.01806 (19)
C90.39637 (12)0.70530 (12)0.16169 (10)0.01788 (19)
H9A0.37610.73100.07560.021*
C100.69758 (12)0.47752 (12)0.06007 (9)0.01754 (19)
C111.01376 (13)0.37860 (13)−0.12410 (10)0.0217 (2)
H11A1.12180.3474−0.19110.026*
C120.46748 (13)0.45026 (12)0.23786 (10)0.01882 (19)
C130.23818 (13)0.71222 (12)0.26432 (10)0.01865 (19)
C140.83205 (13)0.32265 (12)0.05951 (10)0.0201 (2)
H14A0.81330.25380.12200.024*
C150.28055 (13)0.56764 (12)0.30958 (10)0.0190 (2)
C160.99386 (13)0.27226 (13)−0.03493 (10)0.0209 (2)
C170.87312 (13)0.53027 (13)−0.11305 (10)0.0216 (2)
H17A0.88890.6027−0.17290.026*
C180.07123 (14)0.86461 (13)0.30661 (11)0.0230 (2)
C200.23239 (15)0.44492 (14)0.50530 (11)0.0242 (2)
H20A0.35080.35140.47060.029*
H20B0.15380.40400.55590.029*
C211.14368 (15)0.10896 (14)−0.03822 (13)0.0295 (2)
H21A1.24310.1216−0.03930.044*
H21B1.17490.0388−0.11750.044*
H21C1.11080.05980.04000.044*
C220.40700 (15)1.08725 (13)0.20518 (12)0.0263 (2)
H22A0.41731.15840.13800.039*
H22B0.50611.04640.23720.039*
H22C0.29931.14850.27870.039*
C23−0.22672 (15)0.98915 (16)0.42475 (13)0.0347 (3)
H23A−0.31770.96000.46590.052*
H23B−0.25181.05040.35140.052*
H23C−0.22301.05600.48990.052*
C240.23145 (19)0.56449 (17)0.59437 (13)0.0351 (3)
H24A0.25950.51420.67120.053*
H24B0.11630.66060.62350.053*
H24C0.31790.59660.54650.053*
O6'0.0517 (16)0.9913 (13)0.2663 (9)0.0417 (17)0.50
O60.0634 (17)0.9971 (12)0.2975 (10)0.0393 (15)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0207 (4)0.0295 (4)0.0238 (4)−0.0162 (3)−0.0077 (3)0.0093 (3)
O20.0264 (4)0.0174 (3)0.0276 (4)−0.0124 (3)−0.0107 (3)0.0065 (3)
O30.0280 (4)0.0229 (4)0.0262 (4)−0.0124 (3)−0.0126 (3)0.0039 (3)
N10.0194 (4)0.0210 (4)0.0196 (4)−0.0107 (3)−0.0058 (3)0.0030 (3)
O40.0168 (4)0.0254 (4)0.0354 (4)−0.0078 (3)−0.0006 (3)0.0022 (3)
O50.0237 (4)0.0182 (4)0.0318 (4)−0.0108 (3)−0.0076 (3)0.0060 (3)
N20.0161 (4)0.0154 (4)0.0202 (4)−0.0072 (3)−0.0033 (3)0.0018 (3)
C80.0155 (4)0.0157 (4)0.0198 (4)−0.0070 (3)−0.0028 (3)0.0017 (3)
C90.0168 (4)0.0166 (4)0.0192 (4)−0.0078 (4)−0.0049 (3)0.0024 (3)
C100.0175 (4)0.0184 (4)0.0175 (4)−0.0097 (4)−0.0048 (3)0.0001 (3)
C110.0188 (4)0.0264 (5)0.0197 (4)−0.0118 (4)−0.0044 (3)0.0003 (4)
C120.0195 (4)0.0188 (4)0.0204 (4)−0.0111 (4)−0.0063 (3)0.0024 (3)
C130.0168 (4)0.0204 (5)0.0190 (4)−0.0096 (4)−0.0051 (3)0.0017 (3)
C140.0192 (4)0.0181 (4)0.0217 (5)−0.0086 (4)−0.0059 (4)0.0015 (3)
C150.0181 (4)0.0213 (5)0.0202 (4)−0.0118 (4)−0.0059 (3)0.0030 (3)
C160.0183 (4)0.0208 (5)0.0223 (5)−0.0082 (4)−0.0065 (4)−0.0008 (4)
C170.0215 (5)0.0250 (5)0.0196 (4)−0.0128 (4)−0.0061 (4)0.0037 (4)
C180.0197 (5)0.0227 (5)0.0223 (5)−0.0085 (4)−0.0044 (4)0.0024 (4)
C200.0246 (5)0.0249 (5)0.0242 (5)−0.0133 (4)−0.0081 (4)0.0090 (4)
C210.0199 (5)0.0238 (5)0.0350 (6)−0.0051 (4)−0.0052 (4)0.0027 (4)
C220.0280 (5)0.0168 (5)0.0329 (6)−0.0120 (4)−0.0065 (4)0.0016 (4)
C230.0176 (5)0.0322 (6)0.0358 (6)−0.0034 (5)0.0009 (4)0.0014 (5)
C240.0472 (7)0.0378 (7)0.0276 (6)−0.0245 (6)−0.0155 (5)0.0082 (5)
O6'0.026 (2)0.026 (2)0.051 (4)−0.0063 (13)0.004 (2)0.014 (2)
O60.0263 (16)0.0202 (13)0.058 (4)−0.0087 (11)−0.002 (3)0.004 (2)

Geometric parameters (Å, °)

O1—C151.3364 (12)C13—C181.4769 (14)
O1—C201.4679 (13)C14—C161.3904 (14)
O2—C81.3238 (12)C14—H14A0.9500
O2—C221.4515 (13)C16—C211.5004 (15)
O3—C81.2035 (13)C17—H17A0.9500
N1—C101.3315 (13)C18—O6'1.204 (10)
N1—C171.3471 (13)C18—O61.218 (10)
O4—C181.3263 (13)C20—C241.5037 (17)
O4—C231.4472 (14)C20—H20A0.9900
O5—C121.2165 (13)C20—H20B0.9900
N2—C121.3785 (12)C21—H21A0.9800
N2—C101.4115 (12)C21—H21B0.9800
N2—C91.4615 (12)C21—H21C0.9800
C8—C91.5369 (14)C22—H22A0.9800
C9—C131.5134 (13)C22—H22B0.9800
C9—H9A1.0000C22—H22C0.9800
C10—C141.3999 (14)C23—H23A0.9800
C11—C171.3830 (15)C23—H23B0.9800
C11—C161.3954 (15)C23—H23C0.9800
C11—H11A0.9500C24—H24A0.9800
C12—C151.5011 (14)C24—H24B0.9800
C13—C151.3440 (14)C24—H24C0.9800
C15—O1—C20116.43 (8)N1—C17—H17A118.0
C8—O2—C22116.22 (9)C11—C17—H17A118.0
C10—N1—C17116.47 (9)O6'—C18—O4122.5 (6)
C18—O4—C23115.57 (9)O6—C18—O4123.7 (6)
C12—N2—C10127.04 (9)O6'—C18—C13123.4 (6)
C12—N2—C9112.20 (8)O6—C18—C13121.9 (6)
C10—N2—C9120.74 (8)O4—C18—C13113.18 (9)
O3—C8—O2126.28 (10)O1—C20—C24110.36 (9)
O3—C8—C9123.12 (9)O1—C20—H20A109.6
O2—C8—C9110.56 (8)C24—C20—H20A109.6
N2—C9—C13102.82 (8)O1—C20—H20B109.6
N2—C9—C8110.34 (8)C24—C20—H20B109.6
C13—C9—C8110.24 (8)H20A—C20—H20B108.1
N2—C9—H9A111.1C16—C21—H21A109.5
C13—C9—H9A111.1C16—C21—H21B109.5
C8—C9—H9A111.1H21A—C21—H21B109.5
N1—C10—C14124.23 (9)C16—C21—H21C109.5
N1—C10—N2114.20 (9)H21A—C21—H21C109.5
C14—C10—N2121.57 (9)H21B—C21—H21C109.5
C17—C11—C16118.70 (9)O2—C22—H22A109.5
C17—C11—H11A120.7O2—C22—H22B109.5
C16—C11—H11A120.7H22A—C22—H22B109.5
O5—C12—N2127.50 (10)O2—C22—H22C109.5
O5—C12—C15126.81 (9)H22A—C22—H22C109.5
N2—C12—C15105.66 (8)H22B—C22—H22C109.5
C15—C13—C18129.15 (9)O4—C23—H23A109.5
C15—C13—C9109.65 (9)O4—C23—H23B109.5
C18—C13—C9121.10 (9)H23A—C23—H23B109.5
C16—C14—C10118.22 (10)O4—C23—H23C109.5
C16—C14—H14A120.9H23A—C23—H23C109.5
C10—C14—H14A120.9H23B—C23—H23C109.5
O1—C15—C13127.97 (9)C20—C24—H24A109.5
O1—C15—C12122.13 (9)C20—C24—H24B109.5
C13—C15—C12109.62 (9)H24A—C24—H24B109.5
C14—C16—C11118.34 (10)C20—C24—H24C109.5
C14—C16—C21120.49 (10)H24A—C24—H24C109.5
C11—C16—C21121.16 (10)H24B—C24—H24C109.5
N1—C17—C11124.02 (10)
C22—O2—C8—O3−11.71 (15)C20—O1—C15—C13−130.46 (11)
C22—O2—C8—C9166.06 (8)C20—O1—C15—C1256.26 (13)
C12—N2—C9—C13−1.63 (11)C18—C13—C15—O17.41 (18)
C10—N2—C9—C13176.88 (8)C9—C13—C15—O1−176.23 (10)
C12—N2—C9—C8115.93 (9)C18—C13—C15—C12−178.63 (10)
C10—N2—C9—C8−65.56 (11)C9—C13—C15—C12−2.27 (11)
O3—C8—C9—N2−40.90 (13)O5—C12—C15—O1−2.48 (16)
O2—C8—C9—N2141.24 (8)N2—C12—C15—O1175.60 (9)
O3—C8—C9—C1371.98 (12)O5—C12—C15—C13−176.85 (10)
O2—C8—C9—C13−105.87 (9)N2—C12—C15—C131.22 (11)
C17—N1—C10—C141.13 (15)C10—C14—C16—C110.02 (15)
C17—N1—C10—N2−179.48 (8)C10—C14—C16—C21178.63 (9)
C12—N2—C10—N1171.31 (9)C17—C11—C16—C141.30 (15)
C9—N2—C10—N1−6.97 (13)C17—C11—C16—C21−177.30 (10)
C12—N2—C10—C14−9.29 (16)C10—N1—C17—C110.34 (15)
C9—N2—C10—C14172.43 (9)C16—C11—C17—N1−1.56 (16)
C10—N2—C12—O50.04 (17)C23—O4—C18—O6'−12.9 (5)
C9—N2—C12—O5178.45 (10)C23—O4—C18—O69.6 (5)
C10—N2—C12—C15−178.01 (9)C23—O4—C18—C13177.55 (10)
C9—N2—C12—C150.39 (11)C15—C13—C18—O6'173.7 (5)
N2—C9—C13—C152.39 (11)C9—C13—C18—O6'−2.3 (5)
C8—C9—C13—C15−115.24 (9)C15—C13—C18—O6151.4 (5)
N2—C9—C13—C18179.09 (9)C9—C13—C18—O6−24.6 (5)
C8—C9—C13—C1861.45 (12)C15—C13—C18—O4−16.81 (16)
N1—C10—C14—C16−1.31 (16)C9—C13—C18—O4167.21 (9)
N2—C10—C14—C16179.34 (9)C15—O1—C20—C2466.34 (12)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5395).

References

  • Anary-Abbasinejad, M., Mirhossaini, M., Parhami, A. & Pourhassan, E. (2010). Synth. Commun.40, 1350–1359.
  • Bienz, S., Busacca, C. & Mayers, A. I. (1989). J. Am. Chem. Soc.111, 1905–1907.
  • Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarnchompoo, B., Thebtaranonth, C. & Thebtaranonth, Y. (1987). Tetrahedron Lett.28, 6675–6678.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography