PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1186.
Published online 2010 April 28. doi:  10.1107/S1600536810014674
PMCID: PMC2979194

4-Nitro­anilinium triiodide monohydrate

Abstract

In the title compound, C6H7N2O2 +·I3 ·H2O, the triiodide anions form two-dimensional sheets along the a and c axes. These sheets are separated by the 4-nitro­anilinium cations and water mol­ecules, which form part of an extended hydrogen-bonded chain with the triiodide along the c axis, represented by the graph set C 3 3(14). The second important hydrogen-bonding inter­action is between the nitro group, the water mol­ecule and the anilinium group, which forms an R 2 2(6) ring and may be the reason for the deviation of the torsion angle between the benzene ring and the nitro group from 180 to 163.2 (4)°. These two strong hydrogen-bonding inter­actions also cause the benzene rings to pack off-centre from one another, with an edge-on-edge π–π stacking distance of 3.634 (6) Å and a centroid–centroid separation of 4.843 (2) Å.

Related literature

For structures of 4-nitro­anilinine-monohalide salts, see: Lemmerer & Billing (2006 [triangle]) (bromine) and Ploug-Sørensen & Andersen (1982 [triangle]) (chlorine). For other amine-based triiodide salts, see: Tebbe & Loukili (1998 [triangle]). For a triiodide salt containing a tetra­phenyl­phospho­nium cation, see: Parvez et al. (1996 [triangle]). For structure-properties relationships in trihalides, see: Shibaeva & Yagubskii (2004 [triangle]). For graph-set analysis, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1186-scheme1.jpg

Experimental

Crystal data

  • C6H7N2O2 +·I3 ·H2O
  • M r = 537.85
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1186-efi2.jpg
  • a = 4.8429 (9) Å
  • b = 14.701 (3) Å
  • c = 18.346 (3) Å
  • β = 91.916 (3)°
  • V = 1305.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.17 mm−1
  • T = 298 K
  • 0.54 × 0.31 × 0.11 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: integration (XPREP; Bruker, 1999 [triangle]) T min = 0.113, T max = 0.506
  • 8741 measured reflections
  • 3150 independent reflections
  • 2461 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.081
  • S = 1.05
  • 3150 reflections
  • 137 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.71 e Å−3
  • Δρmin = −1.42 e Å−3

Data collection: SMART-NT (Bruker, 1998 [triangle]); cell refinement: SMART-NT; data reduction: SAINT-Plus (Bruker, 1999 [triangle]); program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014674/zs2032sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014674/zs2032Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of the Witwatersrand and the National Research Fund (GUN: 2069064) are thanked for the award of a research grant and for providing the infrastructure required to do this work.

supplementary crystallographic information

Comment

Previously 4-nitroanilinine was crystallized with bromine (Lemmerer & Billing, 2006) and chlorine (Ploug-Sørensen et al., 1982) to produce the respective monohalide salts. In an attempt to synthesize a monoiodide salt with 4-nitroaniline, the black crystals of 4-nitroanilinium triiodide monohydrate, C6H7N2O2+ I3- . H2O (I) formed in preference, and the structure is reported here. Polyiodide salts are commonly found, but the triiodides less so. Tebbe & Loukili (1998) have successfully synthesized two tertiary ammonium triiodide salts, while Parvez et al. (1996) synthesized a tetraphenylphosphonium triiodide salt. This is important to note since the title compound has a primary amine as the cation, while in the other three reported cases, bulky counter cations are involved. There are no other structural similarities with (I) with the exception of the the I1—I2—I3 bond angle [178.209 (14)°], which compares with those of the tertiary ammonium triiodides (180, 177.09°) and the bulkier tetraphenylphosphonium triiodide (175.27°).

In the structure of (I) (Figs. 1, 2), the triiodide anions essentially form two-dimensional sheets along the a and c axes. Looking at the interactions along the a axis, the layers of triiodide anions pack parallel to each other with a separation of 4.843 (1) Å. The two intermolecular head-to-tail I1···I1 and the two I3···I3 interactions along the c axis have a separation of 4.574 (1) and 3.772 (1) Å and 4.1079 (7) and 5.2776 (8) Å respectively, completing the interactions which form the two-dimensional sheets. These sheets are separated by the 4-nitroanilium and water moieties which form part of an extended hydrogen-bonded chain with the triiodide along the c axis of the unit cell, represented by the graph set C33(14) (Etter et al., 1990). The graph set notation includes H···I hydrogen bonds with the water and the nitro oxygen (O2) i.e. (O3—H···O2), as seen in Fig 2.

Besides the strong C33(14) hydrogen-bonding network, another important hydrogen-bonding association is between the nitro group, the water and the ammonium group, forming an R22(6) ring (Table 1). This ring appears to be an important interaction which gives a deviation of the torsion angle C6—C1—N1—O2 between the benzene ring and the nitro group from 180° to 163.2 (4)°. The two strong hydrogen-bonding interactions result in the benzene rings packing off-centre from one another with an edge-on-edge π-π stacking distance of 3.634 (6) Å and a centroid-to-centroid separation of 4.843 (2) Å. The many short intermolecular distances between the triiodide anions and the benzene rings may be important in the optical properties of (I), regarding charge-transfer interactions and conductivity, as found in this type of compound (Shibaeva & Yagubskii, 2004).

Experimental

For the preparation of (I) 0.632 g of 4-nitroaniline was dissolved in 4 ml of 55% aqueous HI. The solution was heated to dissolve the precipitate and then left to stand at room temperature. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation of the solvent over a period of one month.

Refinement

The H atoms on nitroaniline were refined using a riding-model, with C—H = 0.93 Å, N—H = 0.89 Å and with Uĩso(H) = 1.2Ueq(C) or 1.5Ueq(N). The H atoms on the water were placed from the difference Fourier map with O—H = 0.90 (2) Å and constrained using the DFIX constraint (Sheldrick, 2008). The highest residual electron density peak (0.708eÅ-3) was 0.865 Å from I2.

Figures

Fig. 1.
View of (I) (50% probability displacement ellipsoids)
Fig. 2.
A view along the a axis of an extended unit cell showing the alignment of the triiodide moieties and C33(14) H-bonding interaction.

Crystal data

C6H7N2O2+·I3·H2OF(000) = 968
Mr = 537.85Dx = 2.737 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9074 reflections
a = 4.8429 (9) Åθ = 2.6–28.3°
b = 14.701 (3) ŵ = 7.17 mm1
c = 18.346 (3) ÅT = 298 K
β = 91.916 (3)°Plate, black
V = 1305.4 (4) Å30.54 × 0.31 × 0.11 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer2461 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.068
Absorption correction: integration (XPREP; Bruker, 1999)θmax = 28°, θmin = 1.8°
Tmin = 0.113, Tmax = 0.506h = −6→4
8741 measured reflectionsk = −19→18
3150 independent reflectionsl = −24→24

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: fullw = 1/[σ2(Fo2) + (0.0374P)2 + 0.3561P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max = 0.001
wR(F2) = 0.081Δρmax = 0.71 e Å3
S = 1.05Δρmin = −1.42 e Å3
3150 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
137 parametersExtinction coefficient: 0.0166 (6)
0 restraints

Special details

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999a)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4993 (8)0.2871 (3)0.2902 (2)0.0404 (8)
C20.6434 (9)0.3443 (3)0.3357 (2)0.0491 (10)
H20.77710.3830.31790.059*
C30.5861 (9)0.3433 (3)0.4094 (2)0.0482 (10)
H30.67790.38220.4420.058*
C40.3913 (8)0.2838 (3)0.4328 (2)0.0410 (9)
C50.2464 (9)0.2267 (3)0.3873 (2)0.0502 (10)
H50.11570.1870.40530.06*
C60.2991 (9)0.2293 (3)0.3129 (2)0.0481 (10)
H60.20060.19280.27980.058*
N10.5625 (8)0.2874 (3)0.21247 (18)0.0494 (9)
N20.3444 (8)0.2797 (3)0.51204 (17)0.0574 (10)
H2A0.19480.24640.51990.086*
H2B0.31980.33570.5290.086*
H2C0.49030.25450.53490.086*
O10.3995 (8)0.2526 (3)0.16900 (17)0.0692 (10)
O20.7804 (8)0.3222 (3)0.19569 (19)0.0774 (11)
O30.8528 (8)0.3133 (2)0.04409 (18)0.0583 (8)
H3A0.878 (14)0.316 (5)0.0917 (12)0.11 (3)*
H3B0.800 (13)0.366 (3)0.024 (3)0.11 (2)*
I10.33289 (8)0.50637 (2)0.091253 (18)0.06519 (14)
I20.22677 (6)0.531920 (18)0.244438 (16)0.04997 (12)
I30.12058 (7)0.55190 (2)0.402108 (17)0.06257 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.047 (2)0.045 (2)0.0290 (18)0.0061 (17)0.0020 (16)−0.0012 (16)
C20.055 (3)0.051 (2)0.041 (2)−0.0106 (19)0.003 (2)0.0007 (18)
C30.057 (3)0.055 (2)0.0320 (19)−0.003 (2)−0.0039 (18)−0.0060 (18)
C40.043 (2)0.051 (2)0.0292 (18)0.0095 (17)0.0039 (16)0.0001 (16)
C50.049 (3)0.062 (3)0.041 (2)−0.005 (2)0.0075 (19)0.002 (2)
C60.049 (2)0.054 (2)0.041 (2)−0.0027 (19)0.0015 (19)−0.0070 (19)
N10.057 (2)0.057 (2)0.0341 (18)0.0053 (18)0.0045 (17)−0.0046 (16)
N20.056 (2)0.083 (3)0.0341 (18)−0.002 (2)0.0071 (16)−0.0006 (19)
O10.078 (2)0.090 (3)0.0390 (17)−0.009 (2)−0.0025 (16)−0.0066 (17)
O20.072 (2)0.115 (3)0.0463 (19)−0.020 (2)0.0136 (17)−0.008 (2)
O30.066 (2)0.067 (2)0.0433 (18)−0.0040 (17)0.0108 (16)−0.0020 (16)
I10.0854 (3)0.0619 (2)0.0487 (2)0.00069 (17)0.00906 (17)0.00064 (14)
I20.0543 (2)0.04402 (18)0.05185 (19)0.00195 (12)0.00491 (13)−0.00021 (12)
I30.0680 (2)0.0673 (2)0.0529 (2)−0.00435 (15)0.01033 (16)−0.01723 (15)

Geometric parameters (Å, °)

C1—C21.361 (6)C6—H60.93
C1—C61.365 (6)N1—O11.216 (5)
C1—N11.468 (5)N1—O21.221 (5)
C2—C31.389 (5)N2—H2A0.89
C2—H20.93N2—H2B0.89
C3—C41.366 (6)N2—H2C0.89
C3—H30.93O3—H3A0.88 (2)
C4—C51.362 (6)O3—H3B0.89 (5)
C4—N21.480 (5)I1—I22.8982 (6)
C5—C61.398 (6)I2—I32.9694 (6)
C5—H50.93
C2—C1—C6123.6 (4)C1—C6—C5118.0 (4)
C2—C1—N1118.3 (4)C1—C6—H6121
C6—C1—N1118.1 (4)C5—C6—H6121
C1—C2—C3118.4 (4)O1—N1—O2123.9 (4)
C1—C2—H2120.8O1—N1—C1118.9 (4)
C3—C2—H2120.8O2—N1—C1117.1 (4)
C4—C3—C2118.4 (4)C4—N2—H2A109.5
C4—C3—H3120.8C4—N2—H2B109.5
C2—C3—H3120.8H2A—N2—H2B109.5
C5—C4—C3123.3 (4)C4—N2—H2C109.5
C5—C4—N2119.0 (4)H2A—N2—H2C109.5
C3—C4—N2117.7 (4)H2B—N2—H2C109.5
C4—C5—C6118.4 (4)H3A—O3—H3B114 (6)
C4—C5—H5120.8I1—I2—I3178.209 (14)
C6—C5—H5120.8
C6—C1—C2—C30.7 (7)C2—C1—C6—C5−2.3 (7)
N1—C1—C2—C3−179.3 (4)N1—C1—C6—C5177.7 (4)
C1—C2—C3—C41.2 (7)C4—C5—C6—C12.0 (6)
C2—C3—C4—C5−1.5 (7)C2—C1—N1—O1−164.1 (4)
C2—C3—C4—N2176.4 (4)C6—C1—N1—O115.9 (6)
C3—C4—C5—C6−0.2 (7)C2—C1—N1—O216.7 (6)
N2—C4—C5—C6−178.0 (4)C6—C1—N1—O2−163.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.891.942.824 (5)173
N2—H2B···I3ii0.893.013.731 (4)139
N2—H2C···O1iii0.892.522.922 (5)108
N2—H2C···O3iii0.892.022.860 (5)157
O3—H3A···O20.88 (2)1.98 (3)2.818 (5)158 (6)
O3—H3B···I1iv0.89 (5)2.88 (5)3.722 (3)157 (4)

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) −x, −y+1, −z+1; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2032).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (1998). SMART-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT-Plus (includes XPREP). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lemmerer, A. & Billing, D. G. (2006). Acta Cryst. E62, o1562–o1564.
  • Parvez, M., Wang, M. & Boorman, P. M. (1996). Acta Cryst. C52, 377–378.
  • Ploug-Sørensen, G. & Andersen, E. K. (1982). Acta Cryst. B38, 671–673.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shibaeva, R. P. & Yagubskii, E. B. (2004). Chem. Rev.104, 5347–5378 [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tebbe, K. F. & Loukili, R. (1998). Z. Anorg. Allg. Chem.624, 1175–1186.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography