PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m493–m494.
Published online 2010 April 10. doi:  10.1107/S1600536810012146
PMCID: PMC2979187

Bis[cis-bis­(diphenyl­phosphino)ethene]copper(I) dichloridocuprate(I)

Abstract

The crystal structure of the title compound, [Cu(C26H22P2)2][CuCl2], is composed of discrete Cu(dppey)2]+ cations [dppey is cis-bis­(diphenyl­phosphino)ethene] and [CuCl2] anions. The tetra­hedral Cu(P—P)2 core of the [Cu(dppey)2]+ cation is distorted, with Cu—P bond lengths ranging from 2.269 (1) to 2.366 (1) Å. The five-membered –Cu—P—CH=CH—P– rings adopt envelope conformations, with the Cu atom lying 0.38 and 0.65 Å out of the P—C=C—P planes. The Cu—Cl distances in the [CuCl2] anion are 2.094 (2) and 2.096 (2) Å, with a Cl—Cu—Cl angle of 176.81 (7)°.

Related literature

For related literature and crystal structures of [Cu(dppey)2]+ complexes, see: Berners-Price et al. (1992 [triangle]); Healy et al. (2009 [triangle]). For background literature and crystal structures of [CuCl2] complexes, see: Rodenstein et al. (2008 [triangle]); Wang et al. (2005 [triangle]); Mirkhani et al. (2004 [triangle]); Healy et al. (1989 [triangle]); Asplund et al. (1983 [triangle]). For Raman spectroscopy of [CuCl2] complexes, see: Bowmaker et al. (1973 [triangle], 2007 [triangle]). For distortion parameters in tetra­hedral bidentate complexes, see: Dobson et al. (1984 [triangle]); Healy et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m493-scheme1.jpg

Experimental

Crystal data

  • [Cu(C26H22P2)2][CuCl2]
  • M r = 990.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m493-efi1.jpg
  • a = 15.3109 (9) Å
  • b = 16.1519 (11) Å
  • c = 18.6419 (8) Å
  • β = 95.950 (4)°
  • V = 4585.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.22 mm−1
  • T = 223 K
  • 0.45 × 0.34 × 0.32 mm

Data collection

  • Oxford Diffraction GEMINI S Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.610, T max = 0.696
  • 18820 measured reflections
  • 8015 independent reflections
  • 6315 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.140
  • S = 1.10
  • 8015 reflections
  • 541 parameters
  • H-atom parameters constrained
  • Δρmax = 2.43 e Å−3
  • Δρmin = −1.04 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012146/nk2029sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012146/nk2029Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this work by the Queensland University of Technology, Griffith University and the Australian Research Council is gratefully acknowledged.

supplementary crystallographic information

Comment

Previous single crystal structure determinations on the 1:2 adducts of copper(I) salts with the bidentate phosphine ligand, Ph2P(CH=CH)PPh2 (dppey), show the formation of stable bis-chelated ionic complexes [Cu(dppey)2]X for X = PF6 (Berners-Price et al., 1992) and for BF4 as an ethanol solvate (Healy et al., 2009). In this present work, addition of aqueous hydrochloric acid to a suspension of copper(I) oxide in a solution of dppey in ethanol resulted in the dissolution of the red copper oxide and subsequent precipitation of crystals of the title complex, [Cu(dppey)2][CuCl2] (I), the structure of which is reported here.

The crystal structure consists of discrete Cu(dppey)2]+ cations and [CuCl2]- anions (Fig. 1). In the cation, the four Cu—P bond lengths are dispersed over the range 2.269 (1) - 2.366 (1) Å. The overall Cu(P—P)2 coordination geometry about the copper atom is distorted tetrahedral with the intra-ligand 'bite' angles 89.61 (4) and 87.15 (4)° while the the P—Cu—P inter-ligand angles range from 115.54 (4) - 123.27 (4)°. Angular distortion of the Cu(L—L)2 core of four-coordinate bis(bidentate) complexes can be conveniently described by the angular distortion parameters θx, θy and θz, where θx and θy represent rocking motions of the two CuP2 planes with respect to each other and θz the degree of twist between the two planes (Dobson et al., 1984; Healy et al., 2008). For complexes with D2 d symmetry, θx = θy = θz = 90°. For this present cation, the values of θx, θy and θz, are 93.4, 86.9 and 92.8°. The five membered -Cu—P—CH=CH—P- rings adopt envelope conformations with the copper atom lying 0.38Å out of the P1—C12=C23—P2 plane and 0.65Å out of the P3—C33=C43—P4 plane.

These results show significant differences from those observed for both the PF6 and BF4 complexes, in which the Cu—P bond lengths span narrow ranges of 2.276 (2)-2.289 (2)Å and 2.272 (1)-2.282 (1)Å respectively. The parameters θx, θy and θz are 90.4, 90.4 and 108.6° for the PF6 complex and 90.5, 89.7 and 72.7° for the BF4 complex; while the distances of the copper from the ligand planes are 0.03, 0.21Å and 0.04,0.21Å respectively.

The Cu—Cl distances in the anion are 2.094 (2) and 2.096 (2) Å. The anion deviates from linearity with the Cl—Cu—Cl angle 176.81 (7)°. These values are in accord with those reported for other compounds incorporating the [CuCl2]- anion (e.g. Rodenstein et al., 2008; Wang et al., 2005: Mirkhani et al., 2004; Healy et al., 1989; Asplund et al., 1983). Four C—H···Cl contacts distances ranging between 2.9 and 3.0Å are observed in the structure (Cl1···H314i 2.88 Å, Cl1···H323ii 2.99 Å, Cl2···H115iii 3.03 Å, Cl2···H33 3.00 Å; symmetry codes: (i) 1-x, -y, 2-z, (ii) x-1/2, 1/2-y, 1/2+z, (iii) x-1/2, 1/2-y, z-1/2).

Both the symmetric and anti-symmetic Cu—Cl stretching modes would be expected to be Raman active in this non linear (C2v) anion and in the solid state Raman spectrum of this complex we have assigned two bands of equal intensity observed at 304 and 319 cm-1 not present in the spectrum of the free ligand to the ν(Cu—Cl) stretching modes (cf. Bowmaker et al., 1973; 2007).

Experimental

A concentrated aqueous solution of HCl was added dropwise to a suspension of Cu2O (0.067 g, 0.47 mmol) in a stirred solution of dppey (0.309 g, 0.78 mmol) in 10 ml e thanol until all the Cu2O dissolved and a white precipitate formed. The volume of the reaction mixture was increased to 30 ml s and heated to reflux to give a clear solution. This was allowed to slowly cool to room temperature to give colourless crystals of the title complex suitable for single crystal X-ray diffraction studies. M.p. 490-491 K. Raman spectra on for the complex and ligand were recorded on a Renishaw InVia spectrometer.

Refinement

H atoms attached to carbons were constrained as riding atoms, with C–H set to 0.95 Å. Uiso(H) values were set to 1.2Ueq of the parent atom. Maximum residual electron density in the complex was located at 0.9Å from the cationic copper site.

Figures

Fig. 1.
View of the cation and anion of the title complex. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are omitted for clarity.

Crystal data

[Cu(C26H22P2)2][CuCl2]F(000) = 2032
Mr = 990.75Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ynCell parameters from 8706 reflections
a = 15.3109 (9) Åθ = 3.2–32.5°
b = 16.1519 (11) ŵ = 1.22 mm1
c = 18.6419 (8) ÅT = 223 K
β = 95.950 (4)°Block, colourless
V = 4585.3 (5) Å30.45 × 0.34 × 0.32 mm
Z = 4

Data collection

Oxford Diffraction GEMINI S Ultra diffractometer8015 independent reflections
Radiation source: Enhance (Mo) X-ray Source6315 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 16.0774 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω and [var phi] scansh = −18→17
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)k = −17→19
Tmin = 0.610, Tmax = 0.696l = −14→22
18820 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0716P)2 + 4.4671P] where P = (Fo2 + 2Fc2)/3
8015 reflections(Δ/σ)max = 0.001
541 parametersΔρmax = 2.43 e Å3
0 restraintsΔρmin = −1.04 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.80116 (3)0.21062 (3)0.95590 (2)0.0312 (1)
P10.82828 (6)0.11348 (6)1.04550 (5)0.0277 (3)
P20.93393 (6)0.18014 (6)0.91540 (5)0.0290 (3)
P30.67319 (6)0.21508 (6)0.88279 (4)0.0253 (3)
P40.76677 (6)0.34498 (6)0.99506 (5)0.0300 (3)
C130.9445 (2)0.0902 (2)1.04169 (18)0.0267 (10)
C230.9876 (2)0.1169 (2)0.98804 (18)0.0285 (11)
C330.6106 (2)0.2954 (2)0.92250 (19)0.0320 (11)
C430.6491 (2)0.3492 (2)0.96959 (19)0.0310 (11)
C1110.8199 (2)0.1441 (2)1.13855 (18)0.0288 (11)
C1120.7422 (3)0.1827 (3)1.1532 (2)0.0372 (12)
C1130.7297 (3)0.2054 (3)1.2234 (2)0.0459 (16)
C1140.7943 (3)0.1898 (3)1.2786 (2)0.0484 (16)
C1150.8713 (3)0.1519 (3)1.2650 (2)0.0431 (15)
C1160.8849 (3)0.1299 (3)1.1949 (2)0.0357 (11)
C1210.7829 (2)0.0077 (2)1.04322 (18)0.0297 (11)
C1220.7268 (3)−0.0186 (3)0.98437 (19)0.0341 (11)
C1230.6942 (3)−0.0989 (3)0.9820 (2)0.0401 (14)
C1240.7168 (3)−0.1530 (3)1.0376 (2)0.0425 (12)
C1250.7727 (3)−0.1278 (3)1.0972 (2)0.0450 (16)
C1260.8049 (3)−0.0473 (3)1.10009 (19)0.0366 (11)
C2110.9352 (3)0.1096 (2)0.83815 (19)0.0332 (11)
C2120.8692 (3)0.0504 (3)0.8293 (2)0.0490 (16)
C2130.8656 (4)−0.0057 (3)0.7733 (3)0.0614 (19)
C2140.9258 (4)−0.0020 (3)0.7239 (3)0.0574 (19)
C2150.9916 (3)0.0562 (3)0.7305 (2)0.0534 (16)
C2160.9971 (3)0.1125 (3)0.7880 (2)0.0407 (14)
C2211.0158 (2)0.2587 (2)0.90291 (18)0.0270 (11)
C2221.0773 (3)0.2805 (3)0.95950 (19)0.0384 (11)
C2231.1383 (3)0.3432 (3)0.9517 (2)0.0495 (16)
C2241.1353 (3)0.3864 (3)0.8875 (3)0.0503 (17)
C2251.0736 (3)0.3667 (3)0.8314 (2)0.0443 (16)
C2261.0135 (3)0.3031 (2)0.8384 (2)0.0356 (12)
C3110.5976 (2)0.1280 (2)0.87184 (18)0.0286 (11)
C3120.6123 (3)0.0674 (2)0.8210 (2)0.0345 (11)
C3130.5628 (3)−0.0042 (3)0.8162 (2)0.0447 (14)
C3140.4979 (3)−0.0164 (3)0.8612 (3)0.0487 (16)
C3150.4825 (3)0.0421 (3)0.9106 (3)0.0505 (16)
C3160.5325 (3)0.1148 (3)0.9170 (2)0.0418 (14)
C3210.6762 (2)0.2503 (2)0.78973 (18)0.0268 (10)
C3220.7560 (3)0.2637 (3)0.7634 (2)0.0402 (14)
C3230.7605 (3)0.2870 (3)0.6920 (2)0.0503 (16)
C3240.6835 (3)0.2970 (3)0.6470 (2)0.0463 (15)
C3250.6033 (3)0.2851 (3)0.6725 (2)0.0430 (14)
C3260.5991 (3)0.2620 (2)0.74381 (19)0.0328 (11)
C4110.8069 (3)0.4333 (3)0.9471 (2)0.0408 (13)
C4120.8965 (4)0.4409 (3)0.9429 (4)0.079 (2)
C4130.9290 (6)0.5065 (4)0.9057 (5)0.109 (3)
C4140.8736 (7)0.5646 (4)0.8735 (3)0.099 (3)
C4150.7853 (6)0.5584 (4)0.8783 (3)0.101 (3)
C4160.7511 (4)0.4939 (4)0.9159 (3)0.076 (2)
C4210.7838 (3)0.3777 (2)1.08940 (19)0.0311 (11)
C4220.8642 (3)0.3600 (3)1.1275 (2)0.0426 (14)
C4230.8832 (3)0.3860 (3)1.1984 (2)0.0500 (16)
C4240.8211 (3)0.4268 (3)1.2323 (2)0.0533 (16)
C4250.7404 (3)0.4450 (3)1.1957 (2)0.0535 (16)
C4260.7216 (3)0.4196 (3)1.1241 (2)0.0445 (14)
Cu20.44649 (4)0.31970 (4)1.04879 (3)0.0542 (2)
Cl10.49493 (10)0.23942 (9)1.13188 (8)0.0720 (5)
Cl20.40010 (12)0.39502 (13)0.96164 (8)0.0965 (7)
H130.974900.058301.079100.0320*
H231.047700.102700.987500.0340*
H330.549000.299000.909400.0380*
H430.614900.390300.990100.0370*
H1120.697600.193901.115100.0440*
H1130.676500.231301.233100.0540*
H1140.785800.205601.326500.0580*
H1150.915200.140601.303600.0510*
H1160.938900.105201.185500.0430*
H1220.710500.018300.945700.0410*
H1230.65610−0.116500.941500.0480*
H1240.69410−0.207901.035500.0500*
H1250.78870−0.165301.135600.0530*
H1260.84220−0.029601.141100.0430*
H2120.826000.048300.862400.0580*
H2130.82100−0.047000.768900.0730*
H2140.92210−0.040100.684800.0680*
H2151.033200.058100.696100.0640*
H2161.042900.152500.793000.0480*
H2221.078100.252301.004300.0460*
H2231.181400.356200.990400.0590*
H2241.176200.429700.882200.0590*
H2251.071800.396700.787400.0530*
H2260.971000.290100.799200.0420*
H3120.656500.075400.789600.0410*
H3130.57360−0.045300.781700.0530*
H3140.46390−0.065800.857600.0570*
H3150.437300.033800.941100.0600*
H3160.521800.154900.952300.0490*
H3220.808700.257000.794500.0480*
H3230.815800.295800.674400.0590*
H3240.686200.312500.598100.0560*
H3250.550800.292300.641200.0510*
H3260.543700.254200.761500.0390*
H4120.935900.401100.965700.0940*
H4130.990500.510900.902700.1300*
H4140.896500.609000.847800.1170*
H4150.747000.598900.855400.1210*
H4160.689900.491500.920500.0910*
H4220.906800.329701.104700.0510*
H4230.939400.375201.223300.0600*
H4240.833400.442801.281400.0630*
H4250.697900.474501.219100.0640*
H4260.665600.431301.099200.0530*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0253 (2)0.0421 (3)0.0255 (2)−0.0024 (2)−0.0001 (2)0.0085 (2)
P10.0270 (5)0.0350 (5)0.0208 (4)−0.0012 (4)0.0017 (4)0.0063 (4)
P20.0266 (5)0.0378 (6)0.0222 (4)−0.0030 (4)0.0011 (4)0.0077 (4)
P30.0252 (5)0.0304 (5)0.0198 (4)−0.0006 (4)0.0001 (3)0.0010 (4)
P40.0292 (5)0.0353 (5)0.0256 (5)−0.0015 (4)0.0036 (4)0.0015 (4)
C130.0292 (19)0.0286 (19)0.0217 (16)0.0023 (15)0.0004 (14)0.0062 (14)
C230.0245 (18)0.034 (2)0.0260 (18)−0.0026 (15)−0.0021 (14)0.0038 (15)
C330.0266 (19)0.042 (2)0.0277 (18)0.0069 (17)0.0038 (15)−0.0005 (17)
C430.0304 (19)0.036 (2)0.0273 (18)0.0080 (17)0.0060 (15)0.0006 (16)
C1110.036 (2)0.0268 (19)0.0243 (17)−0.0041 (16)0.0064 (15)0.0049 (15)
C1120.036 (2)0.036 (2)0.040 (2)0.0012 (17)0.0057 (17)0.0040 (18)
C1130.050 (3)0.039 (2)0.052 (3)0.007 (2)0.021 (2)−0.005 (2)
C1140.067 (3)0.047 (3)0.034 (2)−0.006 (2)0.018 (2)−0.0094 (19)
C1150.053 (3)0.048 (3)0.0278 (19)−0.003 (2)0.0014 (18)−0.0018 (18)
C1160.038 (2)0.040 (2)0.0288 (19)0.0011 (18)0.0025 (16)−0.0017 (17)
C1210.0280 (19)0.038 (2)0.0242 (17)−0.0008 (16)0.0074 (15)0.0026 (15)
C1220.035 (2)0.041 (2)0.0261 (18)−0.0004 (17)0.0026 (16)−0.0014 (16)
C1230.042 (2)0.044 (3)0.034 (2)−0.0031 (19)0.0026 (17)−0.0109 (19)
C1240.047 (2)0.035 (2)0.047 (2)−0.0069 (19)0.012 (2)−0.0041 (19)
C1250.056 (3)0.040 (3)0.039 (2)−0.003 (2)0.005 (2)0.0096 (19)
C1260.045 (2)0.040 (2)0.0239 (18)−0.0067 (19)−0.0010 (16)0.0044 (16)
C2110.039 (2)0.036 (2)0.0231 (17)−0.0003 (17)−0.0040 (15)0.0058 (16)
C2120.054 (3)0.048 (3)0.044 (2)−0.013 (2)0.001 (2)0.000 (2)
C2130.068 (4)0.046 (3)0.066 (3)−0.011 (2)−0.013 (3)0.002 (3)
C2140.074 (4)0.047 (3)0.045 (3)0.016 (3)−0.024 (3)−0.012 (2)
C2150.060 (3)0.061 (3)0.038 (2)0.015 (3)−0.001 (2)−0.003 (2)
C2160.042 (2)0.047 (3)0.032 (2)0.0003 (19)−0.0020 (17)−0.0035 (19)
C2210.0233 (18)0.032 (2)0.0271 (17)0.0001 (15)0.0087 (14)−0.0006 (15)
C2220.045 (2)0.045 (2)0.0249 (18)−0.008 (2)0.0028 (16)−0.0016 (17)
C2230.050 (3)0.053 (3)0.045 (2)−0.018 (2)0.002 (2)−0.013 (2)
C2240.053 (3)0.042 (3)0.058 (3)−0.012 (2)0.016 (2)−0.002 (2)
C2250.048 (3)0.041 (3)0.046 (2)−0.003 (2)0.015 (2)0.014 (2)
C2260.034 (2)0.039 (2)0.034 (2)0.0011 (17)0.0039 (16)0.0058 (17)
C3110.0252 (18)0.035 (2)0.0243 (17)−0.0004 (15)−0.0036 (14)0.0066 (15)
C3120.037 (2)0.036 (2)0.0292 (19)0.0002 (17)−0.0026 (16)0.0002 (16)
C3130.050 (3)0.039 (2)0.042 (2)0.000 (2)−0.010 (2)−0.0048 (19)
C3140.048 (3)0.033 (2)0.063 (3)−0.010 (2)−0.004 (2)0.009 (2)
C3150.038 (2)0.053 (3)0.062 (3)−0.008 (2)0.013 (2)0.016 (2)
C3160.038 (2)0.046 (3)0.043 (2)0.0005 (19)0.0121 (18)0.003 (2)
C3210.0311 (19)0.0268 (19)0.0220 (16)0.0000 (15)0.0010 (14)0.0025 (14)
C3220.034 (2)0.055 (3)0.031 (2)0.0004 (19)0.0003 (17)0.0122 (19)
C3230.047 (3)0.067 (3)0.039 (2)−0.004 (2)0.015 (2)0.015 (2)
C3240.058 (3)0.055 (3)0.0254 (19)−0.009 (2)0.0024 (19)0.0089 (19)
C3250.046 (2)0.048 (3)0.032 (2)0.000 (2)−0.0095 (18)0.0062 (19)
C3260.033 (2)0.037 (2)0.0276 (18)0.0015 (17)−0.0008 (15)0.0027 (16)
C4110.062 (3)0.039 (2)0.0234 (18)−0.010 (2)0.0139 (18)−0.0039 (17)
C4120.087 (4)0.033 (3)0.129 (5)−0.005 (3)0.076 (4)−0.001 (3)
C4130.150 (7)0.037 (3)0.163 (7)−0.020 (4)0.127 (6)−0.014 (4)
C4140.207 (9)0.053 (4)0.046 (3)−0.054 (5)0.055 (4)−0.015 (3)
C4150.168 (8)0.067 (4)0.056 (4)−0.048 (5)−0.045 (4)0.027 (3)
C4160.091 (4)0.064 (4)0.063 (3)−0.034 (3)−0.035 (3)0.030 (3)
C4210.038 (2)0.031 (2)0.0247 (18)−0.0097 (16)0.0048 (16)−0.0001 (15)
C4220.041 (2)0.049 (3)0.037 (2)−0.010 (2)0.0005 (18)0.0002 (19)
C4230.050 (3)0.060 (3)0.037 (2)−0.013 (2)−0.010 (2)0.007 (2)
C4240.066 (3)0.066 (3)0.027 (2)−0.025 (3)0.000 (2)−0.002 (2)
C4250.062 (3)0.065 (3)0.035 (2)−0.009 (2)0.012 (2)−0.011 (2)
C4260.044 (2)0.055 (3)0.034 (2)−0.002 (2)0.0011 (18)−0.003 (2)
Cu20.0453 (3)0.0650 (4)0.0523 (3)0.0000 (3)0.0049 (3)−0.0095 (3)
Cl10.0788 (10)0.0607 (8)0.0766 (9)0.0045 (7)0.0087 (7)0.0063 (7)
Cl20.0892 (12)0.1363 (16)0.0624 (9)0.0361 (11)−0.0003 (8)0.0138 (10)

Geometric parameters (Å, °)

Cu1—P12.2979 (11)C125—H1250.9500
Cu1—P22.2941 (10)C126—H1260.9500
Cu1—P32.2689 (10)C311—C3121.397 (5)
Cu1—P42.3663 (11)C311—C3161.386 (5)
Cu2—Cl22.0940 (18)C212—H2120.9500
Cu2—Cl12.0958 (16)C312—C3131.381 (6)
P1—C1111.821 (3)C313—C3141.379 (7)
P1—C131.827 (3)C213—H2130.9500
P1—C1211.843 (3)C314—C3151.357 (7)
P2—C2111.838 (4)C214—H2140.9500
P2—C231.823 (3)C315—C3161.400 (7)
P2—C2211.816 (3)C215—H2150.9500
P3—C3111.820 (3)C216—H2160.9500
P3—C3211.831 (3)C321—C3261.397 (5)
P3—C331.816 (3)C321—C3221.380 (5)
P4—C4211.829 (4)C222—H2220.9500
P4—C431.816 (3)C322—C3231.392 (5)
P4—C4111.824 (5)C223—H2230.9500
C13—C231.326 (5)C323—C3241.384 (6)
C33—C431.329 (5)C224—H2240.9500
C111—C1121.395 (6)C324—C3251.375 (6)
C111—C1161.389 (5)C225—H2250.9500
C112—C1131.391 (5)C325—C3261.389 (5)
C113—C1141.375 (6)C226—H2260.9500
C13—H130.9500C411—C4121.388 (8)
C114—C1151.375 (7)C411—C4161.387 (8)
C115—C1161.391 (5)C312—H3120.9500
C121—C1221.388 (5)C412—C4131.387 (10)
C121—C1261.397 (5)C313—H3130.9500
C122—C1231.389 (7)C413—C4141.362 (11)
C123—C1241.372 (6)C314—H3140.9500
C23—H230.9500C414—C4151.368 (14)
C124—C1251.391 (6)C315—H3150.9500
C125—C1261.390 (7)C415—C4161.388 (9)
C33—H330.9500C316—H3160.9500
C43—H430.9500C421—C4261.382 (6)
C211—C2121.389 (6)C421—C4221.386 (6)
C211—C2161.399 (6)C322—H3220.9500
C212—C2131.379 (7)C422—C4231.389 (5)
C112—H1120.9500C423—C4241.365 (6)
C213—C2141.370 (8)C323—H3230.9500
C113—H1130.9500C324—H3240.9500
C114—H1140.9500C424—C4251.380 (6)
C214—C2151.374 (7)C325—H3250.9500
C115—H1150.9500C425—C4261.398 (5)
C215—C2161.402 (6)C326—H3260.9500
C116—H1160.9500C412—H4120.9500
C221—C2261.398 (5)C413—H4130.9500
C221—C2221.385 (5)C414—H4140.9500
C122—H1220.9500C415—H4150.9500
C222—C2231.395 (7)C416—H4160.9500
C123—H1230.9500C422—H4220.9500
C223—C2241.382 (7)C423—H4230.9500
C124—H1240.9500C424—H4240.9500
C224—C2251.372 (7)C425—H4250.9500
C225—C2261.394 (6)C426—H4260.9500
Cl1···C314i3.606 (5)C414···H223x3.0400
Cl1···H314i2.8800C415···H223x2.8100
Cl1···H323ii2.9900C416···H223x3.1000
Cl2···H115iii3.0300C425···H224x2.8700
Cl2···H333.0000C426···H224x2.9000
P1···C232.765 (3)C426···H432.8800
P1···P23.2360 (13)H13···H1162.2400
P2···P13.2360 (13)H13···C1162.9200
P2···C132.757 (3)H23···C2222.9600
P3···P43.1959 (13)H23···H2222.4700
P3···C432.752 (3)H23···C126iv3.0500
P4···C332.742 (3)H33···H3162.5100
P4···P33.1959 (13)H33···C3162.9900
P2···H3223.0700H33···Cl23.0000
C13···C23iv3.563 (5)H43···H4162.4500
C23···C13iv3.563 (5)H43···C4262.8800
C111···C4223.563 (6)H43···H4262.2000
C112···C4223.479 (7)H113···C225ii2.9900
C112···C4213.449 (6)H114···H125xi2.5100
C13···H1162.7000H114···C224ii3.0600
C113···C225ii3.481 (6)H115···Cl2v3.0300
C13···H325v3.0100H116···H132.2400
C114···C224ii3.548 (7)H116···C132.7000
C116···C1263.517 (6)H116···H325v2.5800
C23···H2222.5900H116···C214iv3.0300
C126···C1163.517 (6)H122···C3122.7500
C33···H3162.7300H122···H2122.5200
C43···H4262.7400H122···C3112.7400
C43···H4162.5700H125···H114vii2.5100
C111···H1262.8300H126···C216iv2.9900
C213···C325vi3.545 (7)H126···C1162.8200
C214···C416vi3.559 (8)H126···C1112.8300
C115···H425vii3.0800H212···C1223.0600
C115···H326v3.0500H212···H1222.5200
C116···H1262.8200H213···C323vi3.0800
C116···H132.9200H213···C324vi2.9700
C216···C2263.221 (6)H214···H416vi2.5200
C116···H325v3.0900H215···H425viii2.5700
C221···C4123.583 (6)H216···C2262.6300
C122···H315i3.0000H216···C2212.7400
C122···H2123.0600H216···H2262.4900
C123···H324vi2.8600H222···C232.5900
C123···H315i2.8000H222···H232.4700
C224···C114viii3.548 (7)H222···H324v2.5100
C225···C113viii3.481 (6)H222···C324v3.0700
C225···C4133.543 (9)H223···C415x2.8100
C226···C4123.561 (7)H223···C416x3.1000
C126···H23iv3.0500H223···C414x3.0400
C226···C2163.221 (6)H224···C426x2.9000
C211···H2263.0700H224···C425x2.8700
C312···C3263.454 (5)H226···C2113.0700
C314···Cl1i3.606 (5)H226···H3222.5300
C214···H116iv3.0300H226···C2162.9100
C214···H416vi3.0700H226···H2162.4900
C315···C315i3.588 (8)H312···C3212.8400
C216···H2262.9100H312···C414vi3.0300
C216···H126iv2.9900H314···Cl1i2.8800
C221···H2162.7400H315···C123i2.8000
C221···H4122.9100H315···C122i3.0000
C222···H232.9600H316···C332.7300
C222···H4122.9200H316···H332.5100
C224···H4133.0300H322···H2262.5300
C224···H114viii3.0600H322···P23.0700
C225···H4133.0300H323···Cl1viii2.9900
C225···H113viii2.9900H324···H222iii2.5100
C325···C213ix3.545 (7)H324···C123ix2.8600
C326···C3123.454 (5)H325···C13iii3.0100
C226···H2162.6300H325···H116iii2.5800
C311···H3262.9500H325···C116iii3.0900
C311···H1222.7400H326···C115iii3.0500
C312···H1222.7500H326···C3112.9500
C412···C2263.561 (7)H412···C2212.9100
C412···C2213.583 (6)H412···C2222.9200
C413···C2253.543 (9)H413···C2243.0300
C314···H424iii3.0300H413···C2253.0300
C416···C214ix3.559 (8)H414···C325ix2.8700
C316···H332.9900H414···C326ix3.0100
C321···H3122.8400H416···H432.4500
C421···C1123.449 (6)H416···C432.5700
C422···C1123.479 (7)H416···H214ix2.5200
C422···C1113.563 (6)H416···C214ix3.0700
C323···H213ix3.0800H424···C314v3.0300
C324···H222iii3.0700H425···H215ii2.5700
C324···H213ix2.9700H425···C115xi3.0800
C325···H414vi2.8700H426···H432.2000
C326···H414vi3.0100H426···C432.7400
C414···H312ix3.0300
P1—Cu1—P289.61 (4)C125—C126—H126120.00
P1—Cu1—P3122.55 (4)P3—C311—C312118.2 (3)
P1—Cu1—P4115.54 (4)C312—C311—C316118.7 (3)
P2—Cu1—P3123.27 (4)P3—C311—C316122.7 (3)
P2—Cu1—P4122.10 (4)C311—C312—C313120.3 (4)
P3—Cu1—P487.15 (4)C213—C212—H212119.00
Cl1—Cu2—Cl2176.81 (7)C211—C212—H212120.00
Cu1—P1—C111118.80 (11)C212—C213—H213120.00
Cu1—P1—C121125.23 (11)C312—C313—C314120.4 (4)
C13—P1—C111104.95 (15)C214—C213—H213120.00
C13—P1—C121100.06 (15)C313—C314—C315120.0 (4)
C111—P1—C121102.13 (15)C213—C214—H214120.00
Cu1—P1—C13102.45 (11)C215—C214—H214120.00
Cu1—P2—C23102.85 (11)C314—C315—C316120.7 (4)
Cu1—P2—C221122.64 (11)C216—C215—H215120.00
C23—P2—C211101.20 (16)C214—C215—H215120.00
C23—P2—C221102.88 (15)C215—C216—H216120.00
C211—P2—C221105.62 (17)C211—C216—H216120.00
Cu1—P2—C211118.20 (15)C311—C316—C315119.9 (4)
Cu1—P3—C311122.85 (11)P3—C321—C326121.3 (3)
Cu1—P3—C321118.30 (11)C322—C321—C326118.9 (3)
Cu1—P3—C33103.72 (11)P3—C321—C322119.7 (3)
C33—P3—C321103.33 (15)C321—C322—C323121.1 (4)
C311—P3—C321102.25 (15)C221—C222—H222120.00
C33—P3—C311103.98 (15)C223—C222—H222119.00
Cu1—P4—C43101.55 (11)C322—C323—C324119.2 (4)
Cu1—P4—C421123.20 (12)C222—C223—H223120.00
C43—P4—C411102.59 (18)C224—C223—H223120.00
Cu1—P4—C411117.98 (15)C225—C224—H224120.00
C411—P4—C421102.93 (17)C223—C224—H224120.00
C43—P4—C421106.21 (19)C323—C324—C325120.6 (4)
P1—C13—C23121.7 (3)C226—C225—H225120.00
P2—C23—C13121.4 (2)C224—C225—H225120.00
P3—C33—C43121.3 (2)C324—C325—C326120.0 (4)
P4—C43—C33120.6 (3)C225—C226—H226120.00
P1—C111—C116124.0 (3)C321—C326—C325120.2 (4)
C112—C111—C116119.0 (3)C221—C226—H226120.00
P1—C111—C112117.0 (3)C412—C411—C416118.9 (5)
C111—C112—C113120.4 (4)P4—C411—C412118.8 (4)
C23—C13—H13119.00P4—C411—C416122.2 (4)
C112—C113—C114119.8 (4)C313—C312—H312120.00
P1—C13—H13119.00C411—C412—C413120.3 (6)
C113—C114—C115120.5 (4)C311—C312—H312120.00
C114—C115—C116120.1 (4)C314—C313—H313120.00
C111—C116—C115120.2 (4)C312—C313—H313120.00
P1—C121—C122120.2 (3)C412—C413—C414120.5 (8)
P1—C121—C126120.7 (3)C313—C314—H314120.00
C122—C121—C126119.1 (4)C413—C414—C415119.7 (7)
C121—C122—C123120.1 (4)C315—C314—H314120.00
C13—C23—H23119.00C316—C315—H315120.00
P2—C23—H23119.00C414—C415—C416121.0 (6)
C122—C123—C124120.6 (4)C314—C315—H315120.00
C123—C124—C125120.2 (4)C315—C316—H316120.00
C124—C125—C126119.4 (4)C311—C316—H316120.00
C121—C126—C125120.6 (4)C411—C416—C415119.6 (6)
C43—C33—H33119.00C422—C421—C426118.7 (3)
P3—C33—H33119.00P4—C421—C422117.6 (3)
P4—C43—H43120.00P4—C421—C426123.7 (3)
C33—C43—H43120.00C421—C422—C423120.9 (4)
P2—C211—C216124.5 (3)C321—C322—H322120.00
P2—C211—C212117.0 (3)C323—C322—H322119.00
C212—C211—C216118.6 (3)C422—C423—C424120.0 (4)
C211—C212—C213120.9 (4)C324—C323—H323120.00
C113—C112—H112120.00C322—C323—H323120.00
C111—C112—H112120.00C423—C424—C425120.3 (4)
C114—C113—H113120.00C325—C324—H324120.00
C212—C213—C214120.2 (5)C323—C324—H324120.00
C112—C113—H113120.00C424—C425—C426119.7 (4)
C113—C114—H114120.00C326—C325—H325120.00
C213—C214—C215120.5 (5)C324—C325—H325120.00
C115—C114—H114120.00C421—C426—C425120.5 (4)
C114—C115—H115120.00C325—C326—H326120.00
C116—C115—H115120.00C321—C326—H326120.00
C214—C215—C216119.9 (4)C411—C412—H412120.00
C111—C116—H116120.00C413—C412—H412120.00
C211—C216—C215119.9 (4)C414—C413—H413120.00
C115—C116—H116120.00C412—C413—H413120.00
P2—C221—C222120.3 (3)C413—C414—H414120.00
C222—C221—C226118.7 (3)C415—C414—H414120.00
P2—C221—C226120.9 (3)C416—C415—H415120.00
C121—C122—H122120.00C414—C415—H415119.00
C221—C222—C223121.0 (3)C411—C416—H416120.00
C123—C122—H122120.00C415—C416—H416120.00
C122—C123—H123120.00C423—C422—H422120.00
C124—C123—H123120.00C421—C422—H422119.00
C222—C223—C224119.6 (4)C422—C423—H423120.00
C123—C124—H124120.00C424—C423—H423120.00
C125—C124—H124120.00C425—C424—H424120.00
C223—C224—C225120.1 (4)C423—C424—H424120.00
C124—C125—H125120.00C424—C425—H425120.00
C126—C125—H125120.00C426—C425—H425120.00
C224—C225—C226120.6 (4)C421—C426—H426120.00
C121—C126—H126120.00C425—C426—H426120.00
C221—C226—C225120.0 (4)
P2—Cu1—P1—C1311.99 (11)Cu1—P4—C43—C33−16.8 (3)
P2—Cu1—P1—C111127.00 (12)C411—P4—C43—C33105.6 (3)
P2—Cu1—P1—C121−100.03 (13)C421—P4—C43—C33−146.7 (3)
P3—Cu1—P1—C13142.27 (11)Cu1—P4—C411—C412−57.5 (4)
P3—Cu1—P1—C111−102.72 (12)Cu1—P4—C411—C416123.7 (4)
P3—Cu1—P1—C12130.25 (14)C43—P4—C411—C412−168.1 (4)
P4—Cu1—P1—C13−113.87 (11)C43—P4—C411—C41613.2 (4)
P4—Cu1—P1—C1111.14 (13)C421—P4—C411—C41281.8 (4)
P4—Cu1—P1—C121134.12 (13)C421—P4—C411—C416−97.0 (4)
P1—Cu1—P2—C23−11.66 (11)Cu1—P4—C421—C42247.7 (4)
P1—Cu1—P2—C21198.73 (13)Cu1—P4—C421—C426−133.1 (3)
P1—Cu1—P2—C221−126.34 (14)C43—P4—C421—C422163.7 (3)
P3—Cu1—P2—C23−141.38 (11)C43—P4—C421—C426−17.0 (4)
P3—Cu1—P2—C211−31.00 (14)C411—P4—C421—C422−88.8 (3)
P3—Cu1—P2—C221103.94 (14)C411—P4—C421—C42690.4 (4)
P4—Cu1—P2—C23108.66 (11)P1—C13—C23—P21.1 (4)
P4—Cu1—P2—C211−140.96 (13)P3—C33—C43—P40.8 (4)
P4—Cu1—P2—C221−6.03 (14)P1—C111—C112—C113177.9 (4)
P1—Cu1—P3—C3398.93 (12)C116—C111—C112—C113−1.0 (6)
P1—Cu1—P3—C311−18.05 (14)P1—C111—C116—C115−177.0 (3)
P1—Cu1—P3—C321−147.43 (12)C112—C111—C116—C1151.8 (6)
P2—Cu1—P3—C33−146.92 (11)C111—C112—C113—C1140.1 (7)
P2—Cu1—P3—C31196.10 (13)C112—C113—C114—C1150.0 (7)
P2—Cu1—P3—C321−33.28 (14)C113—C114—C115—C1160.8 (7)
P4—Cu1—P3—C33−19.78 (12)C114—C115—C116—C111−1.7 (7)
P4—Cu1—P3—C311−136.76 (13)P1—C121—C122—C123178.6 (3)
P4—Cu1—P3—C32193.86 (13)C126—C121—C122—C123−0.9 (6)
P1—Cu1—P4—C43−105.01 (12)P1—C121—C126—C125−178.0 (3)
P1—Cu1—P4—C411143.86 (16)C122—C121—C126—C1251.4 (6)
P1—Cu1—P4—C42113.30 (18)C121—C122—C123—C1240.1 (7)
P2—Cu1—P4—C43148.08 (12)C122—C123—C124—C1250.1 (7)
P2—Cu1—P4—C41136.95 (17)C123—C124—C125—C1260.4 (7)
P2—Cu1—P4—C421−93.61 (18)C124—C125—C126—C121−1.2 (7)
P3—Cu1—P4—C4319.97 (12)P2—C211—C212—C213−179.3 (4)
P3—Cu1—P4—C411−91.16 (16)C216—C211—C212—C2131.5 (6)
P3—Cu1—P4—C421138.28 (18)P2—C211—C216—C215−179.4 (3)
Cu1—P1—C13—C23−10.6 (3)C212—C211—C216—C215−0.1 (6)
C111—P1—C13—C23−135.3 (3)C211—C212—C213—C214−2.2 (8)
C121—P1—C13—C23119.2 (3)C212—C213—C214—C2151.6 (8)
Cu1—P1—C111—C11252.6 (3)C213—C214—C215—C216−0.3 (8)
Cu1—P1—C111—C116−128.7 (3)C214—C215—C216—C211−0.5 (7)
C13—P1—C111—C112166.2 (3)P2—C221—C222—C223−177.3 (3)
C13—P1—C111—C116−15.0 (4)C226—C221—C222—C223−2.6 (6)
C121—P1—C111—C112−89.8 (3)P2—C221—C226—C225176.0 (3)
C121—P1—C111—C11689.0 (3)C222—C221—C226—C2251.4 (6)
Cu1—P1—C121—C122−0.7 (4)C221—C222—C223—C2242.5 (7)
Cu1—P1—C121—C126178.8 (3)C222—C223—C224—C225−1.1 (7)
C13—P1—C121—C122−113.8 (3)C223—C224—C225—C226−0.1 (7)
C13—P1—C121—C12665.6 (3)C224—C225—C226—C221−0.1 (6)
C111—P1—C121—C122138.4 (3)P3—C311—C312—C313172.9 (3)
C111—P1—C121—C126−42.2 (3)C316—C311—C312—C313−0.1 (6)
Cu1—P2—C23—C139.1 (3)P3—C311—C316—C315−173.2 (3)
C211—P2—C23—C13−113.6 (3)C312—C311—C316—C315−0.6 (6)
C221—P2—C23—C13137.4 (3)C311—C312—C313—C3140.5 (6)
Cu1—P2—C211—C212−29.1 (4)C312—C313—C314—C315−0.1 (7)
Cu1—P2—C211—C216150.1 (3)C313—C314—C315—C316−0.6 (8)
C23—P2—C211—C21282.2 (3)C314—C315—C316—C3111.0 (7)
C23—P2—C211—C216−98.6 (4)P3—C321—C322—C323177.2 (3)
C221—P2—C211—C212−170.9 (3)C326—C321—C322—C323−1.2 (6)
C221—P2—C211—C2168.3 (4)P3—C321—C326—C325−177.1 (3)
Cu1—P2—C221—C22288.3 (3)C322—C321—C326—C3251.3 (5)
Cu1—P2—C221—C226−86.2 (3)C321—C322—C323—C3240.2 (7)
C23—P2—C221—C222−26.4 (3)C322—C323—C324—C3250.8 (7)
C23—P2—C221—C226159.1 (3)C323—C324—C325—C326−0.7 (7)
C211—P2—C221—C222−132.1 (3)C324—C325—C326—C321−0.4 (6)
C211—P2—C221—C22653.4 (3)P4—C411—C412—C413178.8 (5)
Cu1—P3—C33—C4316.5 (3)C416—C411—C412—C413−2.4 (9)
C311—P3—C33—C43146.0 (3)P4—C411—C416—C415−178.2 (4)
C321—P3—C33—C43−107.5 (3)C412—C411—C416—C4153.1 (8)
Cu1—P3—C311—C312−85.3 (3)C411—C412—C413—C4140.7 (11)
Cu1—P3—C311—C31687.4 (3)C412—C413—C414—C4150.4 (11)
C33—P3—C311—C312157.9 (3)C413—C414—C415—C4160.4 (9)
C33—P3—C311—C316−29.5 (3)C414—C415—C416—C411−2.1 (9)
C321—P3—C311—C31250.6 (3)P4—C421—C422—C423177.3 (4)
C321—P3—C311—C316−136.7 (3)C426—C421—C422—C423−2.0 (6)
Cu1—P3—C321—C3227.8 (4)P4—C421—C426—C425−177.9 (3)
Cu1—P3—C321—C326−173.9 (2)C422—C421—C426—C4251.3 (6)
C33—P3—C321—C322121.6 (3)C421—C422—C423—C4242.5 (7)
C33—P3—C321—C326−60.1 (3)C422—C423—C424—C425−2.3 (7)
C311—P3—C321—C322−130.6 (3)C423—C424—C425—C4261.6 (7)
C311—P3—C321—C32647.7 (3)C424—C425—C426—C421−1.1 (7)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x−1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z−1/2; (iv) −x+2, −y, −z+2; (v) x+1/2, −y+1/2, z+1/2; (vi) −x+3/2, y−1/2, −z+3/2; (vii) −x+3/2, y−1/2, −z+5/2; (viii) x+1/2, −y+1/2, z−1/2; (ix) −x+3/2, y+1/2, −z+3/2; (x) −x+2, −y+1, −z+2; (xi) −x+3/2, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2029).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Asplund, M., Jagner, S. & Nilsson, M. (1983). Acta Chem. Scand. Ser. A, 37, 57–62.
  • Berners-Price, S. J., Colquhoun, L. A., Healy, P. C., Byriel, K. A. & Hanna, J. V. (1992). J. Chem. Soc. Dalton Trans. pp. 3357–3363.
  • Bowmaker, G. A., Brockliss, L. D. & Whiting, R. (1973). Aust. J. Chem.26, 29–42.
  • Bowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem.633, 1024–1030.
  • Dobson, J. F., Green, B. E., Healy, P. C., Kennard, C. H. L., Pakawatchai, C. & White, A. H. (1984). Aust. J. Chem.37, 649–659.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Healy, P. C., Kildea, J. D., Skelton, B. W. & White, A. H. (1989). Aust. J. Chem.42, 115–136.
  • Healy, P. C., Loughley, B. T., Bowmaker, G. A. & Hanna, J. V. (2008). Dalton Trans. pp. 3723–3728. [PubMed]
  • Healy, P. C., Loughrey, B. T. & Williams, M. L. (2009). Acta Cryst. E65, m500–m501. [PMC free article] [PubMed]
  • Mirkhani, V., Harkema, S. & Kia, R. (2004). Acta Cryst. C60, m343–m344. [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Rodenstein, A., Creutzburg, D., Schmiedel, P., Griebel, J., Hennig, L. & Kirmse, R. (2008). Z. Anorg. Allg. Chem.634, 2811–2818.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wang, J.-G., Kang, H.-X. & Zheng, X.-Y. (2005). Z. Kristallogr. New Cryst. Struct.220, 597–598.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography