PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m525–m526.
Published online 2010 April 17. doi:  10.1107/S1600536810013188
PMCID: PMC2979184

Poly[aqua­(μ-pyrazine-2-carboxyl­ato-κ3 N,O:O)(μ-pyrazine-2-carboxyl­ato-κ3 N,O:O′)lead(II)]

Abstract

The polymeric structure of the title compound, [Pb(C5H3N2O2)2(H2O)]n, is built up from centrosymmetric [Pb(C5H3N2O2)2(H2O)]2 dimers, which are bridged by ligand carboxyl­ate O atoms. The PbII ion adopts an irregular PbN2O5 coordination polyhedron; it is chelated by one N,O-bidentate ligand and also bonds to a water O atom. A second N,O-bidentate ligand forms the dimer bridge and another bridging O atom from a nearby dimer also bonds to the PbII ion, leading to layers propagating in (100). A network of O—H(...)O hydrogen bonds operates between water O atoms (donors) and carboxyl­ate O atoms (acceptors).

Related literature

For the crystal structures of divalent metal ions with pyrazine-2-carboxyl­ate and water ligands, see, for example: Alcock et al. (1996 [triangle]); Ptasiewicz-Bąk et al. (1995 [triangle], 1998 [triangle]). The structures of lead(II) complexes with pyrazine-4-carboxyl­ate (Starosta & Leciejewicz, 2009 [triangle]) and pyrazine-3-carboxyl­ate ligands (Starosta & Leciejewicz, 2010 [triangle]) have also been reported.

An external file that holds a picture, illustration, etc.
Object name is e-66-0m525-scheme1.jpg

Experimental

Crystal data

  • [Pb(C5H3N2O2)2(H2O)]
  • M r = 471.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m525-efi1.jpg
  • a = 11.098 (2) Å
  • b = 10.382 (2) Å
  • c = 11.678 (2) Å
  • β = 114.13 (3)°
  • V = 1228.0 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 13.77 mm−1
  • T = 293 K
  • 0.29 × 0.16 × 0.12 mm

Data collection

  • Kuma KM-4 four-circle diffractometer
  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.135, T max = 0.251
  • 3579 measured reflections
  • 3411 independent reflections
  • 2230 reflections with I > 2σ(I)
  • R int = 0.051
  • 3 standard reflections every 200 reflections intensity decay: 20.2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.163
  • S = 1.02
  • 3411 reflections
  • 188 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 6.45 e Å−3
  • Δρmin = −5.86 e Å−3

Data collection: KM-4 Software (Kuma, 1996 [triangle]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013188/hb5383sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013188/hb5383Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Divalent UO2(II) ion (Alcock et al.,1996), 3-d metal M(II) ions (Ptasiewicz-Bąk et al.,(1995), Ca(II) and Sr(II) ions (Ptasiewicz-Bąk et al.,1998) form with pyrazine-2-carboxylate and water ligands monomeric molecules with coordination modes characteristic for particular ions. On the other hand, the structure of a Pb(II) complex with pyridazine-4-carboxylate and water ligands is composed of dimeric molecules (Starosta & Leciejewicz, 2009), while the structure of a Pb(II) complex with pyridazine-3-carboxylate and water ligands is polymeric (Starosta & Leciejewicz, 2010). The structure of title compound (I) is composed of centrosymmetric dimeric molecules in which each of the two Pb(II) ions is cheletated by two symmetry independent ligands via their N,O bonding groups. Their planes make at the metal ion an angle of 85.1 (2)o each to the other. Pb(II) ions are bridged by O11 and O11(i) atoms donated by symmetry related ligands L1. The O12 and O12(i) atoms do not take part in coordination. A water O atom is chelated to each metal ion. The second pair of ligand molecules L2 also coordinates the Pb(II) ions by their N,O bonding groups while the O22 and O22(i) atoms act as bridges to Pb(II) ions in adjacent dimers. A polymeric structure is formed in this way. The coordination geometry of a Pb(II) ion is represented by a pyramid in which N11, O11, O11(I) and O1 atoms form an equatorial plane [ r.m.s. 0.0083 (1) Å] with a Pb(II) ion shifted from it by 0.3079 (2) Å; N21 and O21 atoms make two apices of the pyramid while the bridging O22(II) atom forms a single apex on the other side of the equatorial plane. Bond angles reveal an empty space around the metal ion between Pb—O11(I)and Pb—O1 bonds It may indicate the stereochemical activity of the lone 6 s2 electron pair of the Pb(II) ion. Pyrazine rings of both ligands are planar: r.m.s. 0.0089 (2)Å in L1 and 0.0046 (1)Å in L2. The C17/O11/O12 carboxylic group makes an angle of 6.7 (1)° with pyrazine ring L1, the carboxylic group C27/O21/O22 - an angle of 9.1 (1)° with L2. Weak hydrogen bonds operate between the coordinated water O atoms (donors) and carboxylate O21 and O22 atoms (acceptors) in adjacent dimers.

Experimental

The title compound was synthetized by reacting boiling aqueous solution of pyrazine-2-carboxylic acid dihydrate (Aldrich) with some excess of lead(II) hydroxide. The mixture was boiled under reflux for three hours and after cooling to room temperature, filtered and left for crystallization. Few days later, colourless blocks of (I) were found after evaporation to dryness. They were extracted, washed with cold ethanol and dried in the air.

Refinement

Water hydrogen atoms were found from Fourier maps and restrained geometrically to form hydrogen bonds. H atoms attached to pyrazine -ring C atoms were positioned geometrically and refined with a riding model. A maximum peak of 6.450 e Å3 (at 0.83 Å) and a deepest hole of -5.858 e Å3 (at 0.80 Å) were found on the final electron density map close to the Pb1 atom.

Figures

Fig. 1.
A structural unit of (1) with 50% probability displacement ellipsoids. Symmetry codes: (i) -x+1,-y,-z+1; (ii) x,-y+1/2,z-1/2.
Fig. 2.
Packing diagram of the structure of (I).

Crystal data

[Pb(C5H3N2O2)2(H2O)]F(000) = 872
Mr = 471.39Dx = 2.550 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.098 (2) Åθ = 6–15°
b = 10.382 (2) ŵ = 13.77 mm1
c = 11.678 (2) ÅT = 293 K
β = 114.13 (3)°Blocks, colourless
V = 1228.0 (4) Å30.29 × 0.16 × 0.12 mm
Z = 4

Data collection

Kuma KM-4 four-circle diffractometer2230 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
graphiteθmax = 30.1°, θmin = 2.0°
profile data from ω/2θ scansh = 0→14
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)k = −14→0
Tmin = 0.135, Tmax = 0.251l = −15→14
3579 measured reflections3 standard reflections every 200 reflections
3411 independent reflections intensity decay: 20.2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163w = 1/[σ2(Fo2) + (0.1217P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3411 reflectionsΔρmax = 6.45 e Å3
188 parametersΔρmin = −5.86 e Å3
5 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0154 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pb10.47863 (3)0.12876 (4)0.35712 (3)0.02848 (19)
O110.3570 (7)−0.0031 (8)0.4636 (8)0.0413 (18)
C220.6620 (9)0.3784 (10)0.5171 (10)0.034 (2)
O210.4811 (9)0.2586 (8)0.5220 (8)0.0399 (18)
N210.6655 (8)0.2972 (9)0.4344 (8)0.0327 (18)
C120.1581 (9)0.1152 (9)0.3625 (10)0.0299 (19)
C130.0296 (11)0.1383 (11)0.3473 (11)0.039 (2)
H13−0.00390.09570.39800.047*
C270.5599 (12)0.3532 (11)0.5717 (12)0.040 (2)
N220.8312 (12)0.5089 (11)0.5106 (13)0.059 (3)
C260.7546 (11)0.3203 (12)0.3893 (12)0.039 (2)
H260.76160.26420.33030.047*
N110.2083 (9)0.1695 (10)0.2906 (9)0.0362 (19)
C160.1307 (12)0.2491 (12)0.2013 (12)0.045 (3)
H160.16280.28890.14810.054*
C230.7440 (13)0.4853 (12)0.5559 (14)0.050 (3)
H230.73650.54090.61510.060*
O10.4080 (11)0.3287 (10)0.2149 (9)0.056 (2)
H10.378 (11)0.402 (7)0.218 (10)0.084*
H20.385 (8)0.312 (13)0.138 (3)0.084*
O120.2045 (8)−0.0170 (9)0.5394 (8)0.0445 (19)
C170.2455 (9)0.0251 (9)0.4646 (9)0.0275 (18)
N12−0.0479 (10)0.2225 (11)0.2591 (11)0.050 (3)
C150.0023 (12)0.2730 (13)0.1871 (12)0.047 (3)
H15−0.05000.32780.12300.056*
C250.8376 (14)0.4253 (14)0.4272 (15)0.055 (3)
H250.89950.43790.39350.066*
O220.5643 (12)0.4168 (10)0.6610 (9)0.054 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pb10.0271 (2)0.0296 (2)0.0327 (3)0.00255 (14)0.01621 (15)0.00445 (14)
O110.024 (3)0.044 (4)0.060 (5)0.005 (3)0.020 (3)0.021 (4)
C220.019 (4)0.039 (5)0.041 (5)−0.002 (4)0.010 (4)0.008 (4)
O210.045 (4)0.035 (4)0.058 (5)−0.011 (3)0.040 (4)−0.012 (3)
N210.024 (4)0.044 (5)0.038 (5)−0.005 (4)0.021 (3)−0.002 (4)
C120.018 (4)0.035 (5)0.038 (5)−0.002 (3)0.012 (3)−0.003 (4)
C130.031 (5)0.048 (7)0.041 (6)0.009 (4)0.019 (4)−0.001 (4)
C270.038 (6)0.039 (6)0.047 (6)−0.005 (4)0.020 (5)−0.001 (4)
N220.048 (6)0.050 (6)0.091 (9)−0.021 (5)0.042 (6)−0.007 (6)
C260.034 (5)0.050 (6)0.050 (6)−0.004 (5)0.032 (5)−0.003 (5)
N110.027 (4)0.043 (5)0.040 (5)0.001 (4)0.016 (4)0.009 (4)
C160.039 (7)0.046 (6)0.051 (7)0.008 (5)0.018 (6)0.021 (5)
C230.042 (6)0.040 (6)0.077 (9)−0.017 (5)0.032 (6)−0.012 (6)
O10.072 (7)0.052 (5)0.042 (5)0.009 (5)0.022 (5)0.013 (4)
O120.040 (4)0.056 (5)0.044 (4)0.002 (4)0.024 (3)0.011 (4)
C170.022 (4)0.027 (4)0.033 (5)−0.007 (3)0.011 (3)−0.003 (3)
N120.031 (5)0.064 (7)0.054 (6)0.018 (5)0.016 (5)−0.003 (5)
C150.030 (6)0.057 (8)0.045 (7)0.011 (5)0.008 (5)0.012 (5)
C250.044 (7)0.055 (8)0.081 (10)−0.015 (6)0.041 (7)0.003 (7)
O220.077 (6)0.062 (6)0.042 (5)−0.030 (5)0.043 (4)−0.017 (4)

Geometric parameters (Å, °)

Pb1—O212.341 (7)C13—N121.357 (15)
Pb1—O11i2.508 (7)C13—H130.9300
Pb1—O12.573 (9)C27—O221.217 (15)
Pb1—O112.572 (8)N22—C231.302 (17)
Pb1—N212.577 (9)N22—C251.328 (19)
Pb1—N112.807 (9)C26—C251.378 (18)
Pb1—O22ii2.856 (8)C26—H260.9300
O11—C171.277 (12)N11—C161.334 (14)
O11—Pb1i2.508 (7)C16—C151.388 (17)
C22—N211.295 (14)C16—H160.9300
C22—C231.389 (15)C23—H230.9300
C22—C271.532 (16)O1—H10.84 (2)
O21—C271.285 (14)O1—H20.84 (2)
N21—C261.318 (12)O12—C171.219 (12)
C12—N111.310 (13)N12—C151.295 (17)
C12—C131.385 (13)C15—H150.9300
C12—C171.513 (13)C25—H250.9300
O21—Pb1—O11i81.6 (3)C13—C12—C17120.2 (9)
O21—Pb1—O188.0 (3)N12—C13—C12120.6 (11)
O11i—Pb1—O1152.2 (3)N12—C13—H13119.7
O21—Pb1—O1175.0 (3)C12—C13—H13119.7
O11i—Pb1—O1170.5 (3)O22—C27—O21125.7 (12)
O1—Pb1—O11131.3 (3)O22—C27—C22119.1 (10)
O21—Pb1—N2165.4 (3)O21—C27—C22115.1 (10)
O11i—Pb1—N2181.6 (3)C23—N22—C25116.5 (11)
O1—Pb1—N2170.6 (3)N21—C26—C25121.9 (11)
O11—Pb1—N21134.3 (3)N21—C26—H26119.0
O21—Pb1—N1178.0 (3)C25—C26—H26119.0
O11i—Pb1—N11129.8 (3)C12—N11—C16117.4 (10)
O1—Pb1—N1172.0 (3)C12—N11—Pb1116.4 (6)
O11—Pb1—N1160.1 (3)C16—N11—Pb1125.8 (8)
N21—Pb1—N11127.6 (3)N11—C16—C15120.5 (11)
O21—Pb1—O22ii149.2 (3)N11—C16—H16119.8
O11i—Pb1—O22ii102.5 (3)C15—C16—H16119.8
O1—Pb1—O22ii74.3 (3)N22—C23—C22121.0 (13)
O11—Pb1—O22ii135.4 (3)N22—C23—H23119.5
N21—Pb1—O22ii84.8 (3)C22—C23—H23119.5
N11—Pb1—O22ii118.2 (3)Pb1—O1—H1137 (10)
C17—O11—Pb1i119.3 (6)Pb1—O1—H2113 (9)
C17—O11—Pb1125.8 (6)H1—O1—H2106 (3)
Pb1i—O11—Pb1109.5 (3)O12—C17—O11124.8 (9)
N21—C22—C23123.2 (11)O12—C17—C12118.7 (9)
N21—C22—C27116.9 (9)O11—C17—C12116.5 (8)
C23—C22—C27119.9 (11)C15—N12—C13116.5 (10)
C27—O21—Pb1126.1 (7)N12—C15—C16122.9 (11)
C22—N21—C26115.8 (10)N12—C15—H15118.5
C22—N21—Pb1116.0 (6)C16—C15—H15118.5
C26—N21—Pb1127.7 (8)N22—C25—C26121.5 (11)
N11—C12—C13121.9 (10)N22—C25—H25119.2
N11—C12—C17117.9 (8)C26—C25—H25119.2

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H2···O21ii0.84 (2)2.17 (5)2.837 (13)136 (7)
O1—H1···O22iii0.84 (2)2.29 (5)2.969 (15)139 (7)
O1—H1···O12ii0.84 (2)2.49 (7)3.056 (13)126 (7)

Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5383).

References

  • Alcock, N. W., Kemp, T. J., Roe, M. S. & Leciejewicz, J. (1996). Inorg. Chim. Acta A, 248, 241–249.
  • Kuma (1996). KM-4 Software Kuma Diffraction Ltd, Wrocław, Poland.
  • Kuma (2001). DATAPROC Kuma Diffraction Ltd, Wrocław, Poland.
  • Oxford Diffraction (2008). CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Ptasiewicz-Bąk, H., Leciejewicz, J. & Zachara, J. (1995). J. Coord. Chem. A, 36, 317–326.
  • Ptasiewicz-Bąk, H., Ostrowski, A. & Leciejewicz, J. (1998). Pol. J. Chem. A, 72, 2014–2023.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Starosta, W. & Leciejewicz, J. (2009). Acta Cryst. E65, m1291. [PMC free article] [PubMed]
  • Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m192. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography