PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m487.
Published online 2010 April 2. doi:  10.1107/S1600536810011414
PMCID: PMC2979183

Tetra­kis(di-4-pyridylsulfane)dinitratocopper(II)

Abstract

In the title complex, [Cu(NO3)2(C10H8N2S)4], the CuII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-0m487-efi1.jpg) is coordinated by two monodentate nitrate ions and two monodentate di-4-pyridylsulfane ligands, resulting in a slightly distorted trans-arranged CuO2N4 octa­hedral geometry. Intra­molecular C—H(...)O hydrogen bonds are present. In the crystal, adjacent mol­ecules are linked via C—H(...)N hydrogen bonds into chains parallel to the a axis. Inter­molecular C—H(...)O inter­actions also occur.

Related literature

For transition-metal complexes of di-4-pyridylsulfane, see: Wen et al. (2004 [triangle]); Muthu et al. (2005 [triangle]); Xu et al. (2007 [triangle]); Zhang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m487-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C10H8N2S)4]
  • M r = 940.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m487-efi2.jpg
  • a = 9.299 (4) Å
  • b = 10.765 (5) Å
  • c = 10.978 (5) Å
  • α = 84.408 (6)°
  • β = 73.759 (6)°
  • γ = 79.180 (6)°
  • V = 1035.1 (8) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 296 K
  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.847, T max = 0.874
  • 7479 measured reflections
  • 3728 independent reflections
  • 2392 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.100
  • S = 0.90
  • 3679 reflections
  • 277 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810011414/rz2428sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011414/rz2428Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Flexible ligands are interesting due to their smaller steric effects, which contribute to the construction of novel complexes. Compared to the widely investigated 4,4'-bipy, the dps (di-4-pyridylsulfane) ligand is more flexible and the two pyridine rings can rotate freely. There are only few complexes of metal-organic compounds with dps (Xu et al., 2007; Wen et al., 2004; Muthu et al., 2005; Zhang et al., 2008). Herein, we report the synthesis and structure of the title compound, dinitratotetrakis(di-4-pyridylsulfane)copper(II).

The title compound (Fig. 1) crystallizes in the monoclinic space group P1. The copper(II) ion lies on a crystallography inversion centre and adopts a slightly distorted octahedral provided by four N atoms from two dps ligands in the equatorial plane and two O atoms from two nitrate ions in the axial position. In the equatorial plane, the Cu1—N1 and Cu1—N3 bond lengths are 2.047 (3) and 2.023 (3) Å respectively, while the Cu1—O1 axial bond length is 2.558 (3) Å. The conformation of the complex molecule is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal structure (Fig. 2), intermolecular C—H···N hydrogen interactions link molecules into chains parallel to the a axis.

Experimental

The title compound was prepared by adding a solution of copper(II) nitrate hexahydrate (0.1 mmol) in water (6 ml) to a solution of di-4-pyridylsulfane (0.2 mmol) in CH3OH (5 ml) with gentle stirring. After several days, block-shaped blue crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent (Yield 30 mg; 31.9%, based on Cu). Anal. calcd for C40H32CuN10O6S4 (940.59): C 51.08, H 3.43, N 14.89%; found: C 51.23, H 3.45, N 14.93%.

Refinement

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, and with Uiso (H) = 1.2Ueq(C). The anisotropic displacement parameters of atoms O1 and N5 were restrained to be similar (i.e. the SIMU restraint was applied).

Figures

Fig. 1.
The molecular structure of the title compound with atomic labeling scheme and displacement ellipsoids drawn at the 50% probability level [symmetry code: (A) -x+1,-y+2,-z+1].
Fig. 2.
Crystal packing of the title compound viewed along the c axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

[Cu(NO3)2(C10H8N2S)4]Z = 1
Mr = 940.59F(000) = 483
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.299 (4) ÅCell parameters from 4796 reflections
b = 10.765 (5) Åθ = 2.3–28.2°
c = 10.978 (5) ŵ = 0.79 mm1
α = 84.408 (6)°T = 296 K
β = 73.759 (6)°Block, blue
γ = 79.180 (6)°0.21 × 0.19 × 0.17 mm
V = 1035.1 (8) Å3

Data collection

Bruker SMART APEXII diffractometer3728 independent reflections
Radiation source: fine-focus sealed tube2392 reflections with I > 2σ(I)
graphiteRint = 0.061
ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→11
Tmin = 0.847, Tmax = 0.874k = −12→12
7479 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.90w = 1/[σ2(Fo2) + (0.0391P)2] where P = (Fo2 + 2Fc2)/3
3679 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.43 e Å3
6 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50001.00000.50000.03494 (19)
S10.46635 (10)0.45645 (8)0.29541 (10)0.0526 (3)
S20.38860 (11)1.20522 (11)−0.05513 (9)0.0609 (3)
O10.7889 (3)0.9473 (2)0.4138 (2)0.0586 (7)
O20.9388 (3)1.0613 (3)0.2949 (3)0.0869 (10)
O31.0298 (3)0.8845 (3)0.3704 (3)0.1064 (12)
N10.4896 (3)0.8203 (2)0.4611 (2)0.0337 (6)
N2−0.0360 (3)0.4563 (3)0.3369 (3)0.0556 (9)
N30.4666 (3)1.0575 (2)0.3276 (2)0.0327 (6)
N4−0.1253 (4)1.2525 (3)0.0096 (3)0.0642 (9)
N50.9202 (4)0.9628 (3)0.3612 (3)0.0538 (7)
C10.6125 (4)0.7481 (3)0.3889 (3)0.0381 (8)
H10.70610.77480.37110.046*
C20.6058 (4)0.6377 (3)0.3409 (3)0.0381 (8)
H20.69370.59080.29170.046*
C30.4684 (4)0.5955 (3)0.3654 (3)0.0359 (8)
C40.3437 (4)0.6656 (3)0.4452 (3)0.0433 (9)
H40.25000.63850.46820.052*
C50.3596 (4)0.7753 (3)0.4899 (3)0.0413 (9)
H50.27460.82100.54360.050*
C60.2705 (3)0.4599 (3)0.3124 (3)0.0385 (8)
C70.1802 (4)0.5620 (3)0.2676 (4)0.0510 (10)
H70.22050.63260.22700.061*
C80.0298 (4)0.5550 (4)0.2851 (4)0.0560 (10)
H8−0.03090.62530.25860.067*
C90.0547 (4)0.3585 (3)0.3756 (4)0.0556 (10)
H90.01330.28660.41050.067*
C100.2053 (4)0.3570 (3)0.3674 (3)0.0453 (9)
H100.26210.28710.39870.054*
C110.3401 (4)1.0425 (3)0.2976 (3)0.0365 (8)
H110.27051.00050.35690.044*
C120.3082 (4)1.0855 (3)0.1852 (3)0.0386 (8)
H120.21911.07260.16930.046*
C130.4103 (4)1.1485 (3)0.0953 (3)0.0389 (8)
C140.5424 (4)1.1637 (3)0.1250 (3)0.0404 (9)
H140.61401.20510.06710.049*
C150.5658 (4)1.1175 (3)0.2396 (3)0.0369 (8)
H150.65471.12810.25750.044*
C160.1889 (4)1.2224 (3)−0.0291 (3)0.0415 (9)
C170.1259 (4)1.1460 (3)−0.0847 (3)0.0504 (10)
H170.18731.0824−0.13640.061*
C18−0.0290 (5)1.1645 (4)−0.0632 (4)0.0592 (11)
H18−0.06941.1118−0.10220.071*
C190.0927 (4)1.3150 (4)0.0459 (4)0.0603 (11)
H190.13071.37010.08430.072*
C20−0.0611 (5)1.3244 (4)0.0630 (4)0.0725 (13)
H20−0.12501.38590.11610.087*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0427 (4)0.0243 (3)0.0432 (4)−0.0055 (2)−0.0207 (3)0.0000 (3)
S10.0416 (6)0.0364 (5)0.0856 (8)−0.0001 (4)−0.0239 (5)−0.0226 (5)
S20.0406 (6)0.0945 (8)0.0442 (6)−0.0093 (5)−0.0137 (5)0.0163 (6)
O10.0421 (14)0.0601 (14)0.0723 (17)−0.0193 (12)−0.0018 (13)−0.0171 (13)
O20.073 (2)0.064 (2)0.107 (3)−0.0221 (16)0.0062 (18)0.0106 (18)
O30.069 (2)0.089 (2)0.148 (3)0.0266 (18)−0.036 (2)0.000 (2)
N10.0358 (16)0.0265 (14)0.0415 (17)−0.0050 (12)−0.0151 (14)−0.0005 (12)
N20.0396 (18)0.052 (2)0.076 (2)−0.0107 (16)−0.0115 (17)−0.0103 (18)
N30.0353 (16)0.0287 (14)0.0370 (17)−0.0077 (12)−0.0128 (14)−0.0015 (12)
N40.045 (2)0.073 (2)0.072 (3)−0.0104 (19)−0.0154 (19)0.006 (2)
N50.0412 (16)0.0535 (16)0.0649 (18)−0.0102 (15)−0.0065 (15)−0.0127 (14)
C10.0317 (19)0.0398 (19)0.046 (2)−0.0101 (16)−0.0133 (17)−0.0003 (17)
C20.035 (2)0.0339 (19)0.047 (2)−0.0037 (15)−0.0122 (17)−0.0078 (16)
C30.040 (2)0.0269 (17)0.044 (2)−0.0049 (15)−0.0170 (17)−0.0005 (15)
C40.0293 (19)0.0364 (19)0.065 (3)−0.0094 (15)−0.0092 (18)−0.0096 (18)
C50.037 (2)0.0347 (19)0.051 (2)−0.0030 (16)−0.0087 (18)−0.0083 (17)
C60.038 (2)0.0345 (18)0.048 (2)−0.0056 (15)−0.0179 (17)−0.0093 (16)
C70.049 (2)0.040 (2)0.069 (3)−0.0125 (17)−0.023 (2)0.0068 (19)
C80.050 (2)0.046 (2)0.077 (3)−0.0013 (19)−0.030 (2)−0.001 (2)
C90.054 (3)0.044 (2)0.065 (3)−0.0131 (19)−0.006 (2)−0.004 (2)
C100.047 (2)0.0341 (19)0.054 (2)−0.0027 (17)−0.0130 (19)−0.0068 (17)
C110.0350 (19)0.0340 (18)0.042 (2)−0.0104 (15)−0.0114 (17)0.0008 (16)
C120.0321 (19)0.0406 (19)0.045 (2)−0.0078 (15)−0.0133 (17)0.0028 (17)
C130.0323 (19)0.044 (2)0.037 (2)−0.0021 (16)−0.0084 (17)−0.0008 (16)
C140.034 (2)0.043 (2)0.042 (2)−0.0099 (16)−0.0081 (17)0.0042 (17)
C150.0321 (19)0.0322 (18)0.049 (2)−0.0054 (15)−0.0136 (18)−0.0035 (17)
C160.037 (2)0.050 (2)0.036 (2)−0.0015 (17)−0.0137 (17)0.0079 (17)
C170.053 (2)0.045 (2)0.051 (3)−0.0016 (18)−0.015 (2)−0.0030 (19)
C180.062 (3)0.061 (3)0.068 (3)−0.024 (2)−0.032 (2)0.006 (2)
C190.053 (3)0.068 (3)0.065 (3)−0.006 (2)−0.021 (2)−0.018 (2)
C200.053 (3)0.079 (3)0.080 (3)0.008 (2)−0.015 (3)−0.024 (3)

Geometric parameters (Å, °)

Cu1—N3i2.023 (3)C4—H40.9300
Cu1—N32.023 (3)C5—H50.9300
Cu1—N1i2.047 (3)C6—C101.370 (4)
Cu1—N12.047 (3)C6—C71.390 (4)
Cu1—O12.558 (3)C7—C81.373 (5)
Cu1—O1i2.558 (3)C7—H70.9300
S1—C31.754 (3)C8—H80.9300
S1—C61.772 (3)C9—C101.375 (5)
S2—C131.757 (3)C9—H90.9300
S2—C161.775 (3)C10—H100.9300
O1—N51.231 (3)C11—C121.366 (4)
O2—N51.238 (4)C11—H110.9300
O3—N51.216 (4)C12—C131.387 (4)
N1—C51.331 (4)C12—H120.9300
N1—C11.348 (4)C13—C141.397 (4)
N2—C81.326 (4)C14—C151.367 (4)
N2—C91.334 (4)C14—H140.9300
N3—C151.344 (4)C15—H150.9300
N3—C111.347 (4)C16—C171.367 (4)
N4—C201.326 (5)C16—C191.374 (5)
N4—C181.329 (5)C17—C181.372 (5)
C1—C21.365 (4)C17—H170.9300
C1—H10.9300C18—H180.9300
C2—C31.383 (4)C19—C201.375 (5)
C2—H20.9300C19—H190.9300
C3—C41.383 (4)C20—H200.9300
C4—C51.370 (4)
N3i—Cu1—N3180.000 (1)C10—C6—S1119.4 (3)
N3i—Cu1—N1i87.75 (10)C7—C6—S1122.4 (3)
N3—Cu1—N1i92.25 (10)C8—C7—C6117.8 (3)
N3i—Cu1—N192.25 (10)C8—C7—H7121.1
N3—Cu1—N187.75 (10)C6—C7—H7121.1
N1i—Cu1—N1180.00 (14)N2—C8—C7125.3 (3)
N3i—Cu1—O186.21 (9)N2—C8—H8117.3
N3—Cu1—O193.79 (9)C7—C8—H8117.3
N1i—Cu1—O191.99 (9)N2—C9—C10124.3 (3)
N1—Cu1—O188.01 (9)N2—C9—H9117.9
N3i—Cu1—O1i93.79 (9)C10—C9—H9117.9
N3—Cu1—O1i86.21 (9)C6—C10—C9119.0 (3)
N1i—Cu1—O1i88.01 (9)C6—C10—H10120.5
N1—Cu1—O1i91.99 (9)C9—C10—H10120.5
O1—Cu1—O1i180.000 (1)N3—C11—C12123.8 (3)
C3—S1—C6103.18 (15)N3—C11—H11118.1
C13—S2—C16101.57 (15)C12—C11—H11118.1
N5—O1—Cu1159.3 (2)C11—C12—C13119.2 (3)
C5—N1—C1116.5 (3)C11—C12—H12120.4
C5—N1—Cu1122.5 (2)C13—C12—H12120.4
C1—N1—Cu1120.4 (2)C12—C13—C14117.5 (3)
C8—N2—C9115.3 (3)C12—C13—S2124.7 (3)
C15—N3—C11116.8 (3)C14—C13—S2117.8 (3)
C15—N3—Cu1121.7 (2)C15—C14—C13119.6 (3)
C11—N3—Cu1121.4 (2)C15—C14—H14120.2
C20—N4—C18115.0 (3)C13—C14—H14120.2
O3—N5—O1122.4 (4)N3—C15—C14123.1 (3)
O3—N5—O2119.9 (4)N3—C15—H15118.4
O1—N5—O2117.7 (3)C14—C15—H15118.4
N1—C1—C2122.9 (3)C17—C16—C19117.9 (3)
N1—C1—H1118.5C17—C16—S2121.4 (3)
C2—C1—H1118.5C19—C16—S2120.7 (3)
C1—C2—C3120.0 (3)C16—C17—C18119.1 (4)
C1—C2—H2120.0C16—C17—H17120.4
C3—C2—H2120.0C18—C17—H17120.4
C4—C3—C2117.2 (3)N4—C18—C17124.5 (4)
C4—C3—S1125.1 (3)N4—C18—H18117.7
C2—C3—S1117.7 (2)C17—C18—H18117.7
C5—C4—C3119.3 (3)C16—C19—C20118.4 (4)
C5—C4—H4120.4C16—C19—H19120.8
C3—C4—H4120.4C20—C19—H19120.8
N1—C5—C4123.9 (3)N4—C20—C19125.0 (4)
N1—C5—H5118.1N4—C20—H20117.5
C4—C5—H5118.1C19—C20—H20117.5
C10—C6—C7118.1 (3)
N3i—Cu1—O1—N5−120.2 (7)C3—S1—C6—C10−127.2 (3)
N3—Cu1—O1—N559.8 (7)C3—S1—C6—C755.2 (3)
N1i—Cu1—O1—N5−32.6 (7)C10—C6—C7—C82.2 (5)
N1—Cu1—O1—N5147.4 (7)S1—C6—C7—C8179.8 (3)
N3—Cu1—N1—C5−89.3 (3)C9—N2—C8—C71.1 (6)
O1—Cu1—N1—C5176.8 (3)C6—C7—C8—N2−3.0 (6)
O1i—Cu1—N1—C5−3.2 (3)C8—N2—C9—C101.6 (6)
N3i—Cu1—N1—C1−98.5 (2)C7—C6—C10—C90.2 (5)
N3—Cu1—N1—C181.5 (2)S1—C6—C10—C9−177.4 (3)
O1—Cu1—N1—C1−12.3 (2)N2—C9—C10—C6−2.3 (6)
O1i—Cu1—N1—C1167.7 (2)C15—N3—C11—C12−0.6 (4)
N1i—Cu1—N3—C1557.4 (2)Cu1—N3—C11—C12176.5 (2)
N1—Cu1—N3—C15−122.6 (2)N3—C11—C12—C130.0 (5)
O1—Cu1—N3—C15−34.7 (2)C11—C12—C13—C140.5 (5)
O1i—Cu1—N3—C15145.3 (2)C11—C12—C13—S2178.0 (2)
N1i—Cu1—N3—C11−119.5 (2)C16—S2—C13—C1223.8 (3)
N1—Cu1—N3—C1160.5 (2)C16—S2—C13—C14−158.6 (3)
O1—Cu1—N3—C11148.3 (2)C12—C13—C14—C15−0.3 (5)
O1i—Cu1—N3—C11−31.7 (2)S2—C13—C14—C15−178.0 (2)
Cu1—O1—N5—O3166.9 (5)C11—N3—C15—C140.8 (4)
Cu1—O1—N5—O2−14.5 (9)Cu1—N3—C15—C14−176.3 (2)
C5—N1—C1—C23.5 (5)C13—C14—C15—N3−0.4 (5)
Cu1—N1—C1—C2−167.9 (2)C13—S2—C16—C17−111.6 (3)
N1—C1—C2—C30.1 (5)C13—S2—C16—C1969.8 (3)
C1—C2—C3—C4−3.6 (5)C19—C16—C17—C18−0.2 (5)
C1—C2—C3—S1177.4 (2)S2—C16—C17—C18−179.0 (3)
C6—S1—C3—C416.6 (3)C20—N4—C18—C17−0.3 (6)
C6—S1—C3—C2−164.5 (3)C16—C17—C18—N4−0.3 (6)
C2—C3—C4—C53.5 (5)C17—C16—C19—C201.2 (5)
S1—C3—C4—C5−177.6 (3)S2—C16—C19—C20179.9 (3)
C1—N1—C5—C4−3.6 (5)C18—N4—C20—C191.4 (6)
Cu1—N1—C5—C4167.5 (2)C16—C19—C20—N4−1.9 (7)
C3—C4—C5—N10.2 (5)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.523.063 (4)118
C5—H5···O2i0.932.493.419 (4)174
C5—H5···O1i0.932.513.193 (4)130
C14—H14···N4ii0.932.473.279 (5)146
C1—H1···O10.932.273.008 (4)135

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2428).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Muthu, S., Ni, Z. & Vittal, J. J. (2005). Inorg. Chim. Acta, 358, 595–605
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618–m619. [PubMed]
  • Xu, Q.-F., Zhou, Q.-X., Lu, J.-M., Xia, X.-W., Wang, L.-H. & Zhang, Y. (2007). Polyhedron, 26, 4849–4859
  • Zhang, J., Cheng, J.-K., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2008). Inorg. Chem. Commun.11, 164–166

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography