PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1149.
Published online 2010 April 24. doi:  10.1107/S1600536810008937
PMCID: PMC2979181

1-[4-(2-Amino­anilino)phen­yl]-2,2,2-trifluoro­ethanone

Abstract

In the title compound, C14H11F3N2O, the two aromatic rings are oriented at a dihedral angle of 70.84 (8)°. The crystal structure displays inter­molecular N—H(...)O and N—H(...)F inter­actions.

Related literature

For 2,2,2-trifluoroacetophenones as intermediates for further Buchwald–Hartwig coupling, see: Colard et al. (1994 [triangle]); Schenck et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1149-scheme1.jpg

Experimental

Crystal data

  • C14H11F3N2O
  • M r = 280.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1149-efi1.jpg
  • a = 13.0385 (13) Å
  • b = 8.7129 (7) Å
  • c = 22.424 (2) Å
  • V = 2547.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 173 K
  • 0.4 × 0.3 × 0.2 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • 21134 measured reflections
  • 3033 independent reflections
  • 2498 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.127
  • S = 1.06
  • 3033 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810008937/bt5212sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810008937/bt5212Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,2,2-Trifluoroacetophenones are well known as building-blocks in the synthesis of therapeutic agents for example as acetylcholinesterase inhibitors (Colard et al., 1994), as anticonvulsants (Schenck et al., 2004) or as hPPAR agonists. The title compound was prepared in the course of our studies on acetophenone derivatives as potent p38 mitogen-activated protein (MAP) kinase inhibitors.

In the molecule (Fig. 1), rings A (C1—C6) and B (C10—C15) are, of course, planar and they are oriented at a dihedral angle of A/B = 70.84 (8)°. In the crystal structure, intermolecular N8—H8···O16 (2,06 Å) and N7—H7B···F19 (2,32 Å) interactions link the molecules into a three dimensional network. The N8—H8···O16 hydrogen bond forms a chain along the a-axis whereas the N7—H7B···F19 interaction connects two of this chains in direction parallel to the c-axis.

Experimental

For the preparation of the title compound a mixture of 501 mg (2.4 mmol) 1-(4-chlorophenyl)-2,2,2-trifluoroethanone, 332 mg (2.4 mmol) 2-nitroaniline, 1400 mg (4.3 mmol) Cs2CO3,90 mg (0.19 mmol) 2-(dicyclohexylphosphino)-2'-, 4'-, 6'-triisopropylbiphenyl and 20 mg (0.09 mmol) Pd(OAc)2 in 2 ml absolute tert-butanol and 8 ml absolute toluol was stirred for 2 h at 90 °C under an atmosphere of argon. The mixture was diluted with water then extracted with ethyl acetate. The extracts were combined, washed with saturated saline solution, and then dried over Na2SO4. The solvent was removed under vacuum and the crude product was dissolved in 10 ml ethanol, 840 mg (3.71 mmol) tin(II)chloride-dihydrate was added and stirred for 5 h at 348 K. After cooling down to room temperature the mixture was quenched with 20 ml ice-water and after alkalization with NaOH (20 %) extracted three-times with ethyl acetate. The combined organic layer was washed twice with water, dried (Na2SO4), and evaporated under reduced pressure. The residue was purified by flashchromatography (SiO2 60, hexane / ethyl acetate) (yield: 21.5 %). Crystals of the title compound were obtained by slow evaporation of a methanol d6solution at room temperature.

Refinement

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to N7 and N8 were located in difference Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Figures

Fig. 1.
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H11F3N2OF(000) = 1152
Mr = 280.25Dx = 1.461 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7908 reflections
a = 13.0385 (13) Åθ = 2.4–27.7°
b = 8.7129 (7) ŵ = 0.12 mm1
c = 22.424 (2) ÅT = 173 K
V = 2547.4 (4) Å3Block, brown
Z = 80.4 × 0.3 × 0.2 mm

Data collection

Bruker SMART APEXII diffractometer2498 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.026
graphiteθmax = 27.9°, θmin = 1.8°
CCD scanh = −17→17
21134 measured reflectionsk = −11→8
3033 independent reflectionsl = −29→29

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0601P)2 + 1.4118P] where P = (Fo2 + 2Fc2)/3
3033 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.18780 (11)0.80106 (18)0.63368 (7)0.0277 (3)
C20.19637 (13)0.7530 (2)0.69312 (7)0.0330 (4)
C30.11693 (16)0.7953 (2)0.73256 (8)0.0479 (5)
H30.12030.76410.77310.057*
C40.03490 (16)0.8806 (3)0.71344 (11)0.0580 (6)
H4−0.01810.90600.74080.070*
C50.02813 (15)0.9299 (3)0.65535 (11)0.0546 (6)
H5−0.02820.99080.64270.065*
C60.10447 (13)0.8895 (2)0.61572 (8)0.0381 (4)
H60.10000.92260.57540.046*
N70.27946 (14)0.6728 (2)0.71200 (7)0.0486 (4)
H7A0.32490.62750.68710.073*
H7B0.26750.63080.74830.073*
N80.26108 (10)0.75201 (16)0.59059 (5)0.0291 (3)
H80.22970.69120.56000.035*
C90.35838 (11)0.80793 (18)0.58519 (6)0.0255 (3)
C100.39963 (12)0.91396 (18)0.62580 (6)0.0271 (3)
H100.35940.94880.65840.033*
C110.49855 (12)0.96782 (18)0.61856 (6)0.0272 (3)
H110.52561.03940.64640.033*
C120.55966 (11)0.91856 (17)0.57084 (6)0.0253 (3)
C130.51717 (12)0.81270 (19)0.53022 (6)0.0284 (3)
H130.55710.77890.49730.034*
C140.41990 (12)0.75778 (19)0.53712 (6)0.0288 (3)
H140.39340.68540.50940.035*
C150.66340 (11)0.97035 (18)0.55983 (6)0.0266 (3)
O160.71615 (9)0.93617 (15)0.51702 (5)0.0362 (3)
C170.71528 (12)1.0765 (2)0.60606 (7)0.0322 (3)
F180.81079 (8)1.10979 (14)0.59054 (5)0.0480 (3)
F190.72009 (9)1.00909 (14)0.65988 (4)0.0457 (3)
F200.66562 (9)1.20895 (13)0.61292 (6)0.0490 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0266 (7)0.0279 (8)0.0286 (7)−0.0045 (6)0.0007 (5)−0.0050 (6)
C20.0395 (9)0.0301 (8)0.0294 (7)−0.0087 (7)0.0016 (6)−0.0028 (6)
C30.0580 (12)0.0506 (12)0.0350 (9)−0.0185 (9)0.0134 (8)−0.0102 (8)
C40.0368 (10)0.0683 (15)0.0690 (14)−0.0087 (10)0.0175 (9)−0.0283 (12)
C50.0323 (9)0.0582 (13)0.0731 (15)0.0060 (9)−0.0043 (9)−0.0257 (11)
C60.0323 (8)0.0357 (9)0.0461 (9)−0.0009 (7)−0.0083 (7)−0.0099 (7)
N70.0645 (11)0.0484 (10)0.0328 (7)0.0107 (8)−0.0015 (7)0.0043 (7)
N80.0285 (6)0.0334 (7)0.0254 (6)−0.0031 (5)−0.0012 (5)−0.0067 (5)
C90.0268 (7)0.0262 (7)0.0235 (6)0.0018 (6)−0.0019 (5)0.0023 (5)
C100.0291 (7)0.0277 (8)0.0246 (6)0.0013 (6)0.0031 (5)−0.0041 (6)
C110.0300 (7)0.0265 (8)0.0252 (7)−0.0009 (6)0.0008 (5)−0.0049 (6)
C120.0270 (7)0.0265 (8)0.0225 (6)0.0027 (6)0.0004 (5)0.0005 (5)
C130.0315 (7)0.0329 (8)0.0208 (6)0.0051 (6)0.0011 (5)−0.0029 (6)
C140.0334 (7)0.0309 (8)0.0221 (6)0.0005 (6)−0.0032 (6)−0.0047 (6)
C150.0277 (7)0.0272 (8)0.0250 (7)0.0041 (6)0.0003 (5)0.0019 (6)
O160.0313 (6)0.0471 (7)0.0302 (6)0.0038 (5)0.0073 (4)−0.0043 (5)
C170.0301 (8)0.0333 (9)0.0331 (8)−0.0041 (6)0.0044 (6)−0.0016 (6)
F180.0326 (5)0.0561 (7)0.0552 (7)−0.0143 (5)0.0085 (5)−0.0073 (5)
F190.0530 (7)0.0552 (7)0.0289 (5)−0.0147 (5)−0.0056 (4)−0.0012 (4)
F200.0485 (6)0.0319 (6)0.0667 (7)−0.0023 (5)0.0089 (5)−0.0128 (5)

Geometric parameters (Å, °)

C1—C61.391 (2)C9—C101.404 (2)
C1—C21.402 (2)C9—C141.413 (2)
C1—N81.4244 (19)C10—C111.382 (2)
C2—N71.357 (2)C10—H100.9500
C2—C31.411 (2)C11—C121.402 (2)
C3—C41.371 (3)C11—H110.9500
C3—H30.9500C12—C131.410 (2)
C4—C51.374 (4)C12—C151.447 (2)
C4—H40.9500C13—C141.364 (2)
C5—C61.380 (3)C13—H130.9500
C5—H50.9500C14—H140.9500
C6—H60.9500C15—O161.2180 (18)
N7—H7A0.9044C15—C171.545 (2)
N7—H7B0.9069C17—F181.3251 (18)
N8—C91.364 (2)C17—F201.332 (2)
N8—H80.9582C17—F191.3437 (19)
C6—C1—C2120.18 (15)C10—C9—C14118.74 (14)
C6—C1—N8119.58 (15)C11—C10—C9120.30 (13)
C2—C1—N8120.13 (14)C11—C10—H10119.8
N7—C2—C1120.94 (15)C9—C10—H10119.8
N7—C2—C3121.67 (16)C10—C11—C12121.08 (14)
C1—C2—C3117.36 (17)C10—C11—H11119.5
C4—C3—C2121.20 (19)C12—C11—H11119.5
C4—C3—H3119.4C11—C12—C13118.05 (14)
C2—C3—H3119.4C11—C12—C15124.48 (14)
C3—C4—C5121.06 (18)C13—C12—C15117.46 (13)
C3—C4—H4119.5C14—C13—C12121.44 (13)
C5—C4—H4119.5C14—C13—H13119.3
C4—C5—C6119.0 (2)C12—C13—H13119.3
C4—C5—H5120.5C13—C14—C9120.38 (14)
C6—C5—H5120.5C13—C14—H14119.8
C5—C6—C1121.21 (18)C9—C14—H14119.8
C5—C6—H6119.4O16—C15—C12125.88 (14)
C1—C6—H6119.4O16—C15—C17115.33 (14)
C2—N7—H7A123.8C12—C15—C17118.78 (13)
C2—N7—H7B110.6F18—C17—F20107.33 (14)
H7A—N7—H7B119.4F18—C17—F19106.72 (14)
C9—N8—C1125.23 (12)F20—C17—F19107.33 (13)
C9—N8—H8122.1F18—C17—C15111.47 (13)
C1—N8—H8111.3F20—C17—C15112.54 (13)
N8—C9—C10122.24 (13)F19—C17—C15111.16 (13)
N8—C9—C14119.02 (13)
C6—C1—C2—N7−176.94 (16)C10—C11—C12—C130.2 (2)
N8—C1—C2—N76.8 (2)C10—C11—C12—C15179.43 (14)
C6—C1—C2—C31.2 (2)C11—C12—C13—C14−0.7 (2)
N8—C1—C2—C3−175.01 (15)C15—C12—C13—C14−179.98 (14)
N7—C2—C3—C4177.89 (19)C12—C13—C14—C90.9 (2)
C1—C2—C3—C4−0.3 (3)N8—C9—C14—C13179.40 (14)
C2—C3—C4—C5−1.1 (3)C10—C9—C14—C13−0.5 (2)
C3—C4—C5—C61.4 (3)C11—C12—C15—O16−175.65 (16)
C4—C5—C6—C1−0.4 (3)C13—C12—C15—O163.6 (2)
C2—C1—C6—C5−0.9 (3)C11—C12—C15—C175.5 (2)
N8—C1—C6—C5175.34 (17)C13—C12—C15—C17−175.33 (14)
C6—C1—N8—C9107.87 (18)O16—C15—C17—F18−1.0 (2)
C2—C1—N8—C9−75.9 (2)C12—C15—C17—F18178.04 (14)
C1—N8—C9—C105.3 (2)O16—C15—C17—F20119.68 (16)
C1—N8—C9—C14−174.67 (15)C12—C15—C17—F20−61.32 (19)
N8—C9—C10—C11−179.88 (14)O16—C15—C17—F19−119.90 (15)
C14—C9—C10—C110.1 (2)C12—C15—C17—F1959.11 (19)
C9—C10—C11—C120.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N7—H7B···F19i0.912.323.2077 (19)166
N8—H8···O16ii0.962.062.9757 (17)159

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5212).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (2006). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Colard, J. N., Hornsperger, J. M. & Schirlin, D. (1994). Eur. Patent Appl. 36 pp. CODEN: EPXXDW EP627400 A1 19941207CAN 122:132760 AN 1995:350802.
  • Schenck, H. A., Lenkowski, P. W., Choudhury-Mukherjee, I., Ko, S.-H., Stables, J. P., Patel, M. K., Milton, L. & Brown, M. L. (2004). Bioorg. Med. Chem.12, 979–993. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography