PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1030.
Published online 2010 April 10. doi:  10.1107/S1600536810012109
PMCID: PMC2979180

2-tert-Butyl-4-methyl-6-(1,3-oxazinan-1-ylmeth­yl)phenol

Abstract

The title compound, C16H25NO2, which was synthesized by a Mannich reaction route, is a rare example of an organic compound containing the six-membered oxazine ring. The ring adopts a chair conformation and the N atom is pyramidal. The N atom serves as a hydrogen-bond acceptor to the phenolic OH group.

Related literature

The synthesis from 2-tert-butyl-4-methyl­phenol, 3-amino-1-propanol and formaldehyde is an example of carbon–carbon bond formation by the Mannich reaction. For another variation of the Mannich reaction involving 3-amino-1-propanol, see: Korepin et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1030-scheme1.jpg

Experimental

Crystal data

  • C16H25NO2
  • M r = 263.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1030-efi1.jpg
  • a = 6.4740 (7) Å
  • b = 14.1928 (13) Å
  • c = 16.7914 (16) Å
  • V = 1542.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 K
  • 0.28 × 0.20 × 0.12 mm

Data collection

  • Rigaku R-AXIS Spider IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.980, T max = 0.991
  • 15222 measured reflections
  • 2044 independent reflections
  • 1664 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.117
  • S = 1.11
  • 2044 reflections
  • 180 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2002 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012109/bt5237sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012109/bt5237Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank South China University of Technology and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Organic synthesis centers largely on stereoselective carbon–carbon and carbon–heteroatom bond-forming reactions; among such reactions is the class of Mannich reactions, which can be regarded as being the most important carbon–carbon bond-forming reaction. The reactions lead to β-aminocarbonyl compounds, which are important intermediates for pharmaceuticals.

One variation of the Mannich reaction involves the catalytic addition of an amine, R2NH, to an alkene or alkyne, i. e., hydroamination. In the 2-tert-butyl-4-methylphenol reacts with 3-amino-1-propanol to yield a compound having a 1,3-oxazinyl ring (Scheme I, Fig. 1). Such a ring is difficult to synthesis by conventional routes.

Experimental

2-tert-Butyl-4-methylphenol (2.24 g, 12.3 mmol), 3-amino-1-propanol (0.93 g, 12.3 mmol), 37% aqueous formaldehyde (1.83 ml, 24.6 mmol) and triethylamine (2.49 g, 24.6 mmol) in ethanol (50 ml) were heated for 6 hours. Slow evaporation of the filtrate gave light-yellow crystals in 70% yield.

Refinement

Carbon-bound H-atoms were allowed to ride on their parent atoms (C–H 0.93– 0.97 Å) and their displacement parameters were set to 1.2–1.5Ueq(C). The hydroxy H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Due to the absence of anomalous scatterers, the absolute configuration could not be determined, and, therefore, 1488 Friedel pairs were merged.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C16H25NO2F(000) = 576
Mr = 263.37Dx = 1.134 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12093 reflections
a = 6.4740 (7) Åθ = 3.1–27.5°
b = 14.1928 (13) ŵ = 0.07 mm1
c = 16.7914 (16) ÅT = 293 K
V = 1542.9 (3) Å3Block, yellow
Z = 40.28 × 0.20 × 0.12 mm

Data collection

Rigaku R-AXIS Spider IP diffractometer2044 independent reflections
Radiation source: fine-focus sealed tube1664 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −8→8
Tmin = 0.980, Tmax = 0.991k = −18→18
15222 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0739P)2 + 0.0371P] where P = (Fo2 + 2Fc2)/3
2044 reflections(Δ/σ)max = 0.001
180 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = −0.12 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8894 (2)0.48173 (11)0.62162 (8)0.0654 (4)
H10.972 (4)0.5284 (14)0.6242 (18)0.095 (9)*
O20.9444 (3)0.75355 (12)0.59189 (10)0.0816 (5)
N11.0668 (3)0.63695 (11)0.67909 (9)0.0550 (4)
C10.7719 (3)0.47819 (12)0.68939 (10)0.0494 (4)
C20.8294 (3)0.53321 (12)0.75571 (10)0.0506 (4)
C30.7081 (3)0.53034 (12)0.82338 (10)0.0536 (4)
H30.74510.56700.86700.064*
C40.5332 (3)0.47461 (12)0.82833 (10)0.0524 (4)
C50.4816 (3)0.42039 (12)0.76175 (10)0.0501 (4)
H50.36560.38190.76460.060*
C60.5953 (3)0.42121 (12)0.69126 (10)0.0468 (4)
C71.0274 (3)0.58874 (15)0.75529 (11)0.0594 (5)
H7A1.02220.63530.79750.071*
H7B1.14150.54650.76660.071*
C80.4047 (4)0.47229 (16)0.90293 (11)0.0731 (6)
H8A0.27490.44230.89190.110*
H8B0.38060.53550.92110.110*
H8C0.47650.43760.94340.110*
C90.5275 (3)0.36320 (13)0.61807 (10)0.0539 (4)
C100.4755 (5)0.43096 (16)0.54936 (12)0.0754 (6)
H10A0.35550.46730.56300.113*
H10B0.44840.39530.50190.113*
H10C0.59010.47250.54030.113*
C110.3358 (4)0.30415 (17)0.63527 (14)0.0745 (6)
H11A0.22440.34480.65100.112*
H11B0.36510.26050.67740.112*
H11C0.29710.27010.58820.112*
C120.7001 (4)0.29608 (16)0.59218 (13)0.0731 (6)
H12A0.65040.25580.55040.110*
H12B0.74230.25840.63680.110*
H12C0.81570.33200.57310.110*
C130.9229 (3)0.71409 (15)0.66757 (13)0.0668 (5)
H13A0.78280.69120.67420.080*
H13B0.94760.76210.70760.080*
C141.1466 (4)0.79381 (18)0.58285 (17)0.0839 (7)
H14A1.16540.84390.62150.101*
H14B1.16000.82080.53000.101*
C151.3100 (4)0.71942 (18)0.59488 (14)0.0743 (6)
H15A1.30170.67320.55240.089*
H15B1.44570.74820.59300.089*
C161.2798 (3)0.67164 (15)0.67383 (13)0.0633 (5)
H16A1.37570.61950.67900.076*
H16B1.30650.71580.71670.076*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0583 (9)0.0845 (9)0.0533 (7)−0.0116 (8)0.0156 (7)−0.0123 (7)
O20.0656 (10)0.0945 (10)0.0847 (10)−0.0108 (9)−0.0202 (8)0.0295 (9)
N10.0417 (8)0.0652 (8)0.0579 (8)−0.0029 (7)−0.0030 (7)0.0015 (7)
C10.0461 (9)0.0594 (8)0.0427 (8)0.0024 (8)0.0025 (7)−0.0022 (7)
C20.0480 (10)0.0563 (9)0.0474 (8)0.0045 (8)−0.0048 (7)0.0002 (8)
C30.0618 (11)0.0578 (9)0.0412 (8)0.0048 (9)−0.0042 (8)−0.0049 (7)
C40.0547 (10)0.0583 (8)0.0443 (8)0.0077 (8)0.0048 (8)−0.0005 (8)
C50.0474 (10)0.0540 (8)0.0491 (8)0.0026 (8)0.0026 (7)0.0007 (7)
C60.0456 (9)0.0517 (8)0.0431 (7)0.0058 (7)−0.0011 (7)−0.0018 (7)
C70.0526 (11)0.0719 (10)0.0537 (9)−0.0032 (10)−0.0084 (9)0.0020 (9)
C80.0795 (16)0.0877 (13)0.0519 (11)0.0033 (13)0.0197 (10)−0.0034 (10)
C90.0553 (11)0.0637 (10)0.0428 (8)0.0006 (9)−0.0051 (8)−0.0044 (8)
C100.0868 (17)0.0854 (13)0.0541 (10)−0.0005 (13)−0.0201 (11)0.0065 (10)
C110.0764 (16)0.0823 (13)0.0649 (12)−0.0191 (12)−0.0065 (11)−0.0106 (11)
C120.0834 (17)0.0754 (12)0.0606 (11)0.0122 (13)0.0005 (11)−0.0172 (10)
C130.0492 (11)0.0760 (11)0.0752 (13)0.0046 (10)−0.0018 (11)0.0095 (11)
C140.0771 (17)0.0884 (14)0.0861 (16)−0.0235 (14)−0.0163 (14)0.0215 (13)
C150.0625 (14)0.0911 (14)0.0694 (13)−0.0203 (12)0.0040 (11)−0.0028 (11)
C160.0458 (10)0.0732 (11)0.0708 (12)−0.0052 (9)−0.0033 (10)−0.0011 (10)

Geometric parameters (Å, °)

O1—C11.370 (2)C9—C111.526 (3)
O1—H10.852 (10)C9—C121.531 (3)
O2—C131.396 (3)C9—C101.539 (3)
O2—C141.436 (3)C10—H10A0.9600
N1—C131.450 (3)C10—H10B0.9600
N1—C161.467 (3)C10—H10C0.9600
N1—C71.473 (2)C11—H11A0.9600
C1—C61.401 (3)C11—H11B0.9600
C1—C21.410 (2)C11—H11C0.9600
C2—C31.382 (3)C12—H12A0.9600
C2—C71.505 (3)C12—H12B0.9600
C3—C41.384 (3)C12—H12C0.9600
C3—H30.9300C13—H13A0.9700
C4—C51.398 (2)C13—H13B0.9700
C4—C81.504 (2)C14—C151.508 (4)
C5—C61.394 (2)C14—H14A0.9700
C5—H50.9300C14—H14B0.9700
C6—C91.543 (2)C15—C161.502 (3)
C7—H7A0.9700C15—H15A0.9700
C7—H7B0.9700C15—H15B0.9700
C8—H8A0.9600C16—H16A0.9700
C8—H8B0.9600C16—H16B0.9700
C8—H8C0.9600
C1—O1—H1110 (2)C9—C10—H10B109.5
C13—O2—C14110.29 (18)H10A—C10—H10B109.5
C13—N1—C16110.01 (15)C9—C10—H10C109.5
C13—N1—C7110.80 (16)H10A—C10—H10C109.5
C16—N1—C7111.79 (16)H10B—C10—H10C109.5
O1—C1—C6119.54 (15)C9—C11—H11A109.5
O1—C1—C2119.30 (17)C9—C11—H11B109.5
C6—C1—C2121.15 (16)H11A—C11—H11B109.5
C3—C2—C1118.89 (18)C9—C11—H11C109.5
C3—C2—C7120.23 (16)H11A—C11—H11C109.5
C1—C2—C7120.73 (17)H11B—C11—H11C109.5
C2—C3—C4122.09 (16)C9—C12—H12A109.5
C2—C3—H3119.0C9—C12—H12B109.5
C4—C3—H3119.0H12A—C12—H12B109.5
C3—C4—C5117.54 (16)C9—C12—H12C109.5
C3—C4—C8121.00 (16)H12A—C12—H12C109.5
C5—C4—C8121.45 (18)H12B—C12—H12C109.5
C6—C5—C4123.24 (18)O2—C13—N1111.13 (18)
C6—C5—H5118.4O2—C13—H13A109.4
C4—C5—H5118.4N1—C13—H13A109.4
C5—C6—C1117.06 (15)O2—C13—H13B109.4
C5—C6—C9121.45 (17)N1—C13—H13B109.4
C1—C6—C9121.49 (15)H13A—C13—H13B108.0
N1—C7—C2113.26 (15)O2—C14—C15110.27 (18)
N1—C7—H7A108.9O2—C14—H14A109.6
C2—C7—H7A108.9C15—C14—H14A109.6
N1—C7—H7B108.9O2—C14—H14B109.6
C2—C7—H7B108.9C15—C14—H14B109.6
H7A—C7—H7B107.7H14A—C14—H14B108.1
C4—C8—H8A109.5C16—C15—C14110.1 (2)
C4—C8—H8B109.5C16—C15—H15A109.6
H8A—C8—H8B109.5C14—C15—H15A109.6
C4—C8—H8C109.5C16—C15—H15B109.6
H8A—C8—H8C109.5C14—C15—H15B109.6
H8B—C8—H8C109.5H15A—C15—H15B108.2
C11—C9—C12107.79 (16)N1—C16—C15109.08 (18)
C11—C9—C10107.87 (19)N1—C16—H16A109.9
C12—C9—C10109.61 (18)C15—C16—H16A109.9
C11—C9—C6111.95 (16)N1—C16—H16B109.9
C12—C9—C6110.53 (17)C15—C16—H16B109.9
C10—C9—C6109.03 (15)H16A—C16—H16B108.3
C9—C10—H10A109.5
O1—C1—C2—C3178.97 (16)C16—N1—C7—C2−166.73 (16)
C6—C1—C2—C30.0 (3)C3—C2—C7—N1−142.23 (18)
O1—C1—C2—C7−5.4 (3)C1—C2—C7—N142.2 (2)
C6—C1—C2—C7175.57 (16)C5—C6—C9—C11−3.1 (2)
C1—C2—C3—C40.6 (3)C1—C6—C9—C11177.96 (17)
C7—C2—C3—C4−175.06 (16)C5—C6—C9—C12−123.27 (19)
C2—C3—C4—C5−0.1 (2)C1—C6—C9—C1257.8 (2)
C2—C3—C4—C8179.57 (19)C5—C6—C9—C10116.2 (2)
C3—C4—C5—C6−1.0 (3)C1—C6—C9—C10−62.8 (2)
C8—C4—C5—C6179.35 (17)C14—O2—C13—N1−63.1 (2)
C4—C5—C6—C11.5 (3)C16—N1—C13—O262.4 (2)
C4—C5—C6—C9−177.50 (16)C7—N1—C13—O2−173.52 (16)
O1—C1—C6—C5−179.96 (17)C13—O2—C14—C1559.0 (3)
C2—C1—C6—C5−0.9 (2)O2—C14—C15—C16−54.6 (3)
O1—C1—C6—C9−1.0 (2)C13—N1—C16—C15−56.7 (2)
C2—C1—C6—C9178.05 (16)C7—N1—C16—C15179.72 (18)
C13—N1—C7—C270.2 (2)C14—C15—C16—N153.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.85 (1)1.90 (2)2.665 (2)149 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5237).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Korepin, A. G., Galkin, P. V., Glushakova, N. M., Lagodzinskaya, G. V., Loginova, M. V., Lodygina, V. P. & Eremenko, L. T. (2001). Russ. Chem. Bull.50, 104–109.
  • Rigaku (2002). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography