PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m498.
Published online 2010 April 10. doi:  10.1107/S160053681001189X
PMCID: PMC2979177

[O-Ethyl (Z)-N-(2-chloro­phen­yl)thio­carbamato-κS](tricyclo­hexyl­phosphine-κP)gold(I)

Abstract

The title compound, [Au(C9H9ClNOS)(C18H33P)], features a slightly distorted linear coordination geometry for the Au atom defined by a S,P-donor set [S—Au—P = 177.62 (5)°]. The distortion is ascribed to the close approach of the O atom, which forms an intra­molecular contact of 2.970 (5) Å. Disorder was found in the structure with two positions of equal weight being resolved for the C atoms comprising the eth­oxy group.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see: Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m498-scheme1.jpg

Experimental

Crystal data

  • [Au(C9H9ClNOS)(C18H33P)]
  • M r = 692.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m498-efi1.jpg
  • a = 12.0513 (11) Å
  • b = 18.2460 (16) Å
  • c = 13.9712 (12) Å
  • β = 108.892 (2)°
  • V = 2906.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.30 mm−1
  • T = 223 K
  • 0.16 × 0.13 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.294, T max = 1.000
  • 20508 measured reflections
  • 6663 independent reflections
  • 5016 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.113
  • S = 1.07
  • 6663 reflections
  • 307 parameters
  • 4 restraints
  • H-atom parameters constrained
  • Δρmax = 1.09 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001189X/ez2205sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001189X/ez2205Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

supplementary crystallographic information

Comment

The synthesis and characterisation of the title compound, (I), was investigated in the context of crystal engineering and luminescence studies of molecules of the type R3PAu[SC(OR')═NR''], for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008).

The Au atom in (I), Fig. 1, is linearly coordinated within a SP donor set, Table 1. The thiocarbamate ligand coordinates as a thiolate as seen in the C1–S1 [1.734 (6) Å] and C1═N1 [1.261 (8) Å] distances. A small deviation from the ideal geometry is noted, Table 1, which is ascribed to the close approach of the O1 atom [2.970 (5) Å]. No specific intermolecular interactions are noted in the crystal packing.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and EtOC(═S)N(H)(C6H4Cl-2) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CH2Cl2/hexane (3/1) solution held at room temperature.

Refinement

The H atoms were geometrically placed (C—H = 0.94-0.99 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The atoms comprising the ethoxy group were found to be disordered with two positions resolved for the C8 and C9 atoms. From anisotropic refinement, the site occupancy factors were found to be experimentally equivalent and therefore, fixed at 0.5 in the final cycles of the refinement. The anisotropic displacement parameters for each of the pairs of C8 and C9 atoms were constrained to be equivalent. The maximum and minimum residual electron density peaks of 1.09 and 0.76 e Å-3, respectively, were located 0.82 Å and 0.86 Å from the Au atom.

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Crystal data

[Au(C9H9ClNOS)(C18H33P)]F(000) = 1384
Mr = 692.06Dx = 1.581 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 4436 reflections
a = 12.0513 (11) Åθ = 2.1–25.0°
b = 18.2460 (16) ŵ = 5.30 mm1
c = 13.9712 (12) ÅT = 223 K
β = 108.892 (2)°Block, colourless
V = 2906.6 (4) Å30.16 × 0.13 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer6663 independent reflections
Radiation source: fine-focus sealed tube5016 reflections with I > 2σ(I)
graphiteRint = 0.045
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −15→14
Tmin = 0.294, Tmax = 1.000k = −22→23
20508 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0581P)2] where P = (Fo2 + 2Fc2)/3
6663 reflections(Δ/σ)max = 0.002
307 parametersΔρmax = 1.09 e Å3
4 restraintsΔρmin = −0.76 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Au0.529378 (18)0.173673 (11)0.875172 (14)0.04429 (9)
Cl10.42395 (18)0.22916 (13)1.26094 (19)0.1023 (7)
S10.59973 (15)0.18353 (8)1.04903 (11)0.0560 (4)
P10.45520 (12)0.16794 (7)0.70427 (10)0.0395 (3)
N10.5235 (5)0.1057 (3)1.1784 (4)0.0663 (15)
C10.5164 (6)0.1201 (3)1.0884 (5)0.0610 (16)
C20.6046 (6)0.1433 (3)1.2587 (4)0.0581 (15)
C30.5696 (6)0.2006 (4)1.3065 (5)0.0594 (15)
C40.6477 (7)0.2369 (4)1.3876 (5)0.0692 (18)
H40.62200.27601.41900.083*
C50.7621 (7)0.2153 (4)1.4216 (5)0.0707 (19)
H50.81590.24001.47620.085*
C60.7986 (7)0.1581 (4)1.3767 (5)0.073 (2)
H60.87730.14281.40090.087*
C70.7210 (6)0.1229 (4)1.2964 (5)0.0693 (17)
H70.74760.08371.26600.083*
O1A0.4364 (5)0.0846 (2)1.0101 (3)0.0862 (17)0.50
C8A0.3522 (11)0.0437 (7)1.0452 (10)0.070 (4)0.50
H8A10.39050.00041.08310.083*0.50
H8A20.32530.07461.09070.083*0.50
C9A0.2477 (12)0.0201 (8)0.9560 (10)0.078 (3)0.50
H9A10.19950.06250.92810.116*0.50
H9A20.2017−0.01550.97850.116*0.50
H9A30.2752−0.00170.90450.116*0.50
O1B0.4364 (5)0.0846 (2)1.0101 (3)0.0862 (17)0.50
C8B0.3756 (12)0.0190 (5)1.0270 (13)0.070 (4)0.50
H8B10.4211−0.00801.08760.083*0.50
H8B20.3530−0.01370.96820.083*0.50
C9B0.2715 (13)0.0587 (8)1.0410 (12)0.078 (3)0.50
H9B10.29510.08231.10680.116*0.50
H9B20.20940.02381.03670.116*0.50
H9B30.24340.09550.98860.116*0.50
C100.3110 (5)0.1225 (4)0.6683 (4)0.0550 (14)
H100.33060.07070.68730.066*
C110.2437 (5)0.1186 (3)0.5555 (4)0.0473 (12)
H11A0.22810.16850.52850.057*
H11B0.29240.09410.52100.057*
C120.1291 (6)0.0781 (5)0.5329 (5)0.079 (2)
H12A0.08340.08640.46170.094*
H12B0.14610.02550.54130.094*
C130.0565 (6)0.0979 (5)0.5947 (5)0.083 (2)
H13A−0.00700.06210.58340.100*
H13B0.02080.14600.57300.100*
C140.1252 (6)0.1008 (4)0.7069 (5)0.0602 (16)
H14A0.07570.12270.74280.072*
H14B0.14410.05070.73210.072*
C150.2376 (6)0.1444 (4)0.7308 (5)0.0644 (16)
H15A0.21830.19660.71980.077*
H15B0.28300.13780.80240.077*
C160.4327 (6)0.2590 (3)0.6469 (4)0.0536 (14)
H160.35270.27350.64470.064*
C170.4317 (6)0.2634 (4)0.5363 (5)0.0648 (17)
H17A0.50740.24640.53280.078*
H17B0.37070.23080.49430.078*
C180.4091 (9)0.3410 (4)0.4943 (7)0.088 (3)
H18A0.41690.34210.42660.106*
H18B0.32870.35530.48800.106*
C190.4925 (10)0.3944 (5)0.5605 (9)0.125 (4)
H19A0.47370.44380.53240.150*
H19B0.57240.38260.56200.150*
C200.4871 (10)0.3932 (4)0.6706 (8)0.111 (3)
H20A0.54440.42780.71290.134*
H20B0.40880.40820.67020.134*
C210.5138 (9)0.3155 (4)0.7145 (7)0.096 (3)
H21A0.59530.30300.72220.115*
H21B0.50480.31420.78180.115*
C220.5459 (5)0.1134 (3)0.6470 (4)0.0447 (12)
H220.51190.11770.57250.054*
C230.6710 (6)0.1432 (4)0.6789 (6)0.0699 (17)
H23A0.66980.19340.65350.084*
H23B0.70280.14490.75290.084*
C240.7504 (7)0.0962 (5)0.6385 (6)0.086 (2)
H24A0.72340.09850.56440.104*
H24B0.83060.11550.66320.104*
C250.7504 (7)0.0176 (5)0.6717 (5)0.090 (3)
H25A0.8002−0.01180.64330.109*
H25B0.78280.01480.74560.109*
C260.6284 (7)−0.0126 (4)0.6372 (5)0.0731 (19)
H26A0.6300−0.06310.66160.088*
H26B0.5992−0.01380.56310.088*
C270.5449 (6)0.0325 (3)0.6751 (5)0.0597 (16)
H27A0.56760.02790.74890.072*
H27B0.46520.01310.64600.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.04234 (14)0.04968 (14)0.03387 (12)−0.00306 (9)0.00269 (9)−0.00253 (8)
Cl10.0602 (12)0.1215 (18)0.1212 (18)0.0090 (11)0.0236 (12)0.0049 (14)
S10.0604 (9)0.0607 (9)0.0355 (7)−0.0221 (7)−0.0003 (6)−0.0001 (6)
P10.0340 (7)0.0486 (7)0.0338 (6)−0.0022 (5)0.0080 (5)−0.0011 (5)
N10.070 (4)0.070 (3)0.046 (3)−0.019 (3)0.001 (3)0.018 (2)
C10.064 (4)0.048 (3)0.053 (3)−0.018 (3)−0.007 (3)0.012 (3)
C20.058 (4)0.063 (4)0.046 (3)−0.013 (3)0.007 (3)0.017 (3)
C30.055 (4)0.070 (4)0.053 (3)−0.002 (3)0.018 (3)0.020 (3)
C40.079 (5)0.081 (5)0.053 (4)−0.016 (4)0.030 (4)−0.001 (3)
C50.073 (5)0.095 (5)0.038 (3)−0.018 (4)0.008 (3)0.005 (3)
C60.060 (4)0.098 (5)0.048 (4)0.008 (4)−0.001 (3)0.011 (3)
C70.065 (4)0.073 (4)0.058 (4)0.008 (3)0.005 (3)0.008 (3)
O1A0.101 (4)0.070 (3)0.057 (3)−0.044 (3)−0.019 (3)0.014 (2)
C8A0.094 (8)0.018 (6)0.074 (7)−0.022 (6)−0.003 (5)−0.001 (6)
C9A0.076 (7)0.080 (7)0.079 (7)−0.030 (6)0.027 (6)−0.009 (5)
O1B0.101 (4)0.070 (3)0.057 (3)−0.044 (3)−0.019 (3)0.014 (2)
C8B0.094 (8)0.018 (6)0.074 (7)−0.022 (6)−0.003 (5)−0.001 (6)
C9B0.076 (7)0.080 (7)0.079 (7)−0.030 (6)0.027 (6)−0.009 (5)
C100.041 (3)0.082 (4)0.040 (3)−0.010 (3)0.010 (2)−0.012 (3)
C110.043 (3)0.057 (3)0.038 (3)−0.001 (2)0.008 (2)−0.007 (2)
C120.050 (4)0.115 (6)0.067 (4)−0.016 (4)0.013 (3)−0.039 (4)
C130.058 (4)0.119 (6)0.070 (5)−0.028 (4)0.017 (4)−0.022 (4)
C140.054 (4)0.071 (4)0.063 (4)−0.015 (3)0.029 (3)−0.011 (3)
C150.057 (4)0.091 (4)0.045 (3)−0.018 (4)0.016 (3)−0.008 (3)
C160.057 (4)0.056 (3)0.045 (3)0.004 (3)0.013 (3)0.004 (3)
C170.073 (5)0.070 (4)0.057 (4)0.000 (3)0.028 (3)0.018 (3)
C180.106 (7)0.077 (5)0.086 (6)0.017 (5)0.035 (5)0.038 (4)
C190.123 (9)0.087 (6)0.162 (10)−0.022 (6)0.043 (8)0.063 (6)
C200.136 (9)0.052 (4)0.126 (8)−0.035 (5)0.015 (7)0.009 (5)
C210.116 (8)0.065 (5)0.090 (6)−0.027 (4)0.009 (6)0.005 (4)
C220.040 (3)0.055 (3)0.041 (3)0.002 (2)0.014 (2)0.000 (2)
C230.049 (4)0.079 (4)0.087 (5)−0.002 (3)0.029 (4)−0.003 (4)
C240.055 (4)0.112 (6)0.097 (6)0.022 (4)0.033 (4)−0.001 (5)
C250.079 (5)0.133 (7)0.060 (4)0.061 (5)0.022 (4)0.007 (4)
C260.085 (5)0.063 (4)0.074 (4)0.026 (4)0.029 (4)0.006 (3)
C270.071 (4)0.058 (4)0.055 (3)0.016 (3)0.028 (3)0.009 (3)

Geometric parameters (Å, °)

Au—P12.2648 (13)C12—H12B0.9800
Au—S12.3060 (14)C13—C141.518 (9)
Cl1—C31.742 (7)C13—H13A0.9800
S1—C11.734 (6)C13—H13B0.9800
P1—C161.826 (6)C14—C151.512 (8)
P1—C101.842 (6)C14—H14A0.9800
P1—C221.842 (5)C14—H14B0.9800
N1—C11.261 (8)C15—H15A0.9800
N1—C21.405 (8)C15—H15B0.9800
C1—O1B1.364 (7)C16—C211.520 (9)
C1—O1A1.364 (7)C16—C171.544 (8)
C2—C31.378 (10)C16—H160.9900
C2—C71.380 (9)C17—C181.523 (9)
C3—C41.384 (9)C17—H17A0.9800
C4—C51.363 (10)C17—H17B0.9800
C4—H40.9400C18—C191.488 (13)
C5—C61.363 (10)C18—H18A0.9800
C5—H50.9400C18—H18B0.9800
C6—C71.366 (9)C19—C201.561 (16)
C6—H60.9400C19—H19A0.9800
C7—H70.9400C19—H19B0.9800
O1A—C8A1.466 (5)C20—C211.537 (10)
C8A—C9A1.519 (5)C20—H20A0.9800
C8A—H8A10.9800C20—H20B0.9800
C8A—H8A20.9800C21—H21A0.9800
C9A—H9A10.9700C21—H21B0.9800
C9A—H9A20.9700C22—C231.528 (8)
C9A—H9A30.9700C22—C271.529 (7)
O1B—C8B1.461 (5)C22—H220.9900
C8B—C9B1.515 (5)C23—C241.524 (9)
C8B—H8B10.9800C23—H23A0.9800
C8B—H8B20.9800C23—H23B0.9800
C9B—H9B10.9700C24—C251.507 (10)
C9B—H9B20.9700C24—H24A0.9800
C9B—H9B30.9700C24—H24B0.9800
C10—C151.485 (8)C25—C261.496 (11)
C10—C111.522 (7)C25—H25A0.9800
C10—H100.9900C25—H25B0.9800
C11—C121.507 (8)C26—C271.521 (8)
C11—H11A0.9800C26—H26A0.9800
C11—H11B0.9800C26—H26B0.9800
C12—C131.460 (10)C27—H27A0.9800
C12—H12A0.9800C27—H27B0.9800
P1—Au—S1177.62 (5)C13—C14—H14B108.9
C1—S1—Au103.2 (2)H14A—C14—H14B107.7
C16—P1—C10107.2 (3)C10—C15—C14113.0 (5)
C16—P1—C22109.0 (3)C10—C15—H15A109.0
C10—P1—C22106.1 (3)C14—C15—H15A109.0
C16—P1—Au111.85 (18)C10—C15—H15B109.0
C10—P1—Au108.91 (18)C14—C15—H15B109.0
C22—P1—Au113.32 (18)H15A—C15—H15B107.8
C1—N1—C2119.9 (5)C21—C16—C17112.4 (6)
N1—C1—O1B120.2 (5)C21—C16—P1111.7 (4)
N1—C1—O1A120.2 (5)C17—C16—P1116.0 (4)
O1B—C1—O1A0.0 (4)C21—C16—H16105.2
N1—C1—S1126.6 (5)C17—C16—H16105.2
O1B—C1—S1113.2 (4)P1—C16—H16105.2
O1A—C1—S1113.2 (4)C18—C17—C16112.1 (6)
C3—C2—C7116.9 (6)C18—C17—H17A109.2
C3—C2—N1121.0 (6)C16—C17—H17A109.2
C7—C2—N1122.1 (7)C18—C17—H17B109.2
C2—C3—C4121.7 (6)C16—C17—H17B109.2
C2—C3—Cl1118.7 (5)H17A—C17—H17B107.9
C4—C3—Cl1119.6 (6)C19—C18—C17111.6 (7)
C5—C4—C3119.3 (7)C19—C18—H18A109.3
C5—C4—H4120.3C17—C18—H18A109.3
C3—C4—H4120.3C19—C18—H18B109.3
C6—C5—C4120.1 (6)C17—C18—H18B109.3
C6—C5—H5119.9H18A—C18—H18B108.0
C4—C5—H5119.9C18—C19—C20111.6 (7)
C5—C6—C7120.1 (7)C18—C19—H19A109.3
C5—C6—H6120.0C20—C19—H19A109.3
C7—C6—H6120.0C18—C19—H19B109.3
C6—C7—C2121.9 (7)C20—C19—H19B109.3
C6—C7—H7119.1H19A—C19—H19B108.0
C2—C7—H7119.1C21—C20—C19109.6 (8)
C1—O1A—C8A111.1 (6)C21—C20—H20A109.7
C9A—C8A—O1A110.5 (9)C19—C20—H20A109.7
C9A—C8A—H8A1109.6C21—C20—H20B109.7
O1A—C8A—H8A1109.6C19—C20—H20B109.7
C9A—C8A—H8A2109.6H20A—C20—H20B108.2
O1A—C8A—H8A2109.6C16—C21—C20111.6 (7)
H8A1—C8A—H8A2108.1C16—C21—H21A109.3
C1—O1B—C8B121.3 (8)C20—C21—H21A109.3
O1B—C8B—C9B96.3 (9)C16—C21—H21B109.3
O1B—C8B—H8B1112.5C20—C21—H21B109.3
C9B—C8B—H8B1112.5H21A—C21—H21B108.0
O1B—C8B—H8B2112.5C23—C22—C27111.0 (5)
C9B—C8B—H8B2112.5C23—C22—P1110.4 (4)
H8B1—C8B—H8B2110.0C27—C22—P1110.8 (4)
C8B—C9B—H9B1109.5C23—C22—H22108.2
C8B—C9B—H9B2109.5C27—C22—H22108.2
H9B1—C9B—H9B2109.5P1—C22—H22108.2
C8B—C9B—H9B3109.5C24—C23—C22111.7 (6)
H9B1—C9B—H9B3109.5C24—C23—H23A109.3
H9B2—C9B—H9B3109.5C22—C23—H23A109.3
C15—C10—C11113.7 (5)C24—C23—H23B109.3
C15—C10—P1114.0 (4)C22—C23—H23B109.3
C11—C10—P1116.3 (4)H23A—C23—H23B107.9
C15—C10—H10103.6C25—C24—C23111.0 (6)
C11—C10—H10103.6C25—C24—H24A109.4
P1—C10—H10103.6C23—C24—H24A109.4
C12—C11—C10112.6 (5)C25—C24—H24B109.4
C12—C11—H11A109.1C23—C24—H24B109.4
C10—C11—H11A109.1H24A—C24—H24B108.0
C12—C11—H11B109.1C26—C25—C24110.5 (6)
C10—C11—H11B109.1C26—C25—H25A109.6
H11A—C11—H11B107.8C24—C25—H25A109.6
C13—C12—C11116.0 (5)C26—C25—H25B109.6
C13—C12—H12A108.3C24—C25—H25B109.6
C11—C12—H12A108.3H25A—C25—H25B108.1
C13—C12—H12B108.3C25—C26—C27112.3 (6)
C11—C12—H12B108.3C25—C26—H26A109.1
H12A—C12—H12B107.4C27—C26—H26A109.1
C12—C13—C14112.9 (6)C25—C26—H26B109.1
C12—C13—H13A109.0C27—C26—H26B109.1
C14—C13—H13A109.0H26A—C26—H26B107.9
C12—C13—H13B109.0C26—C27—C22111.8 (5)
C14—C13—H13B109.0C26—C27—H27A109.3
H13A—C13—H13B107.8C22—C27—H27A109.3
C15—C14—C13113.4 (5)C26—C27—H27B109.3
C15—C14—H14A108.9C22—C27—H27B109.3
C13—C14—H14A108.9H27A—C27—H27B107.9
C15—C14—H14B108.9
P1—Au—S1—C195.0 (12)C15—C10—C11—C12−46.7 (8)
S1—Au—P1—C1640.8 (12)P1—C10—C11—C12177.8 (5)
S1—Au—P1—C10−77.6 (12)C10—C11—C12—C1346.4 (9)
S1—Au—P1—C22164.6 (12)C11—C12—C13—C14−47.4 (10)
C2—N1—C1—O1B−178.9 (6)C12—C13—C14—C1548.6 (9)
C2—N1—C1—O1A−178.9 (6)C11—C10—C15—C1449.4 (8)
C2—N1—C1—S10.7 (10)P1—C10—C15—C14−174.1 (5)
Au—S1—C1—N1179.9 (6)C13—C14—C15—C10−50.1 (8)
Au—S1—C1—O1B−0.5 (6)C10—P1—C16—C21144.8 (6)
Au—S1—C1—O1A−0.5 (6)C22—P1—C16—C21−100.7 (6)
C1—N1—C2—C3100.5 (8)Au—P1—C16—C2125.4 (6)
C1—N1—C2—C7−82.6 (8)C10—P1—C16—C17−84.6 (5)
C7—C2—C3—C41.0 (9)C22—P1—C16—C1729.9 (6)
N1—C2—C3—C4178.0 (5)Au—P1—C16—C17156.0 (4)
C7—C2—C3—Cl1179.3 (5)C21—C16—C17—C18−51.3 (9)
N1—C2—C3—Cl1−3.6 (8)P1—C16—C17—C18178.4 (6)
C2—C3—C4—C5−0.3 (9)C16—C17—C18—C1953.5 (10)
Cl1—C3—C4—C5−178.6 (5)C17—C18—C19—C20−57.1 (11)
C3—C4—C5—C6−0.7 (10)C18—C19—C20—C2157.7 (12)
C4—C5—C6—C71.0 (11)C17—C16—C21—C2052.8 (10)
C5—C6—C7—C2−0.3 (11)P1—C16—C21—C20−174.8 (7)
C3—C2—C7—C6−0.7 (10)C19—C20—C21—C16−55.0 (12)
N1—C2—C7—C6−177.7 (6)C16—P1—C22—C2369.0 (5)
N1—C1—O1A—C8A11.7 (11)C10—P1—C22—C23−175.8 (4)
O1B—C1—O1A—C8A0(39)Au—P1—C22—C23−56.3 (5)
S1—C1—O1A—C8A−167.9 (7)C16—P1—C22—C27−167.6 (4)
C1—O1A—C8A—C9A166.2 (10)C10—P1—C22—C27−52.4 (5)
N1—C1—O1B—C8B−13.5 (12)Au—P1—C22—C2767.1 (4)
O1A—C1—O1B—C8B0(47)C27—C22—C23—C2452.9 (7)
S1—C1—O1B—C8B166.9 (7)P1—C22—C23—C24176.2 (5)
C1—O1B—C8B—C9B90.8 (12)C22—C23—C24—C25−56.3 (9)
C16—P1—C10—C15−80.8 (5)C23—C24—C25—C2657.6 (8)
C22—P1—C10—C15162.8 (5)C24—C25—C26—C27−56.9 (8)
Au—P1—C10—C1540.4 (5)C25—C26—C27—C2254.2 (8)
C16—P1—C10—C1154.5 (5)C23—C22—C27—C26−51.4 (7)
C22—P1—C10—C11−61.9 (5)P1—C22—C27—C26−174.5 (5)
Au—P1—C10—C11175.8 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2205).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography