PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m591–m592.
Published online 2010 April 30. doi:  10.1107/S160053681001531X
PMCID: PMC2979174

Bis[(1-ammonio­ethane-1,1-di­yl)diphospho­nato-κ2 O,O′]diaqua­nickel(II) nona­hydrate

Abstract

The title compound, [Ni(C2H8NO6P2)2(H2O)2]·9H2O, exhibits a slightly distorted octa­hedral coordination environment around the NiII atom. It contains two mol­ecules of 1-amino­­ethyl­idenediphospho­nic acid in the zwitterionic form, coord­inated via O atoms from two phospho­nate groups and creating two six-membered chelate rings. Two water mol­ecules in cis positions complete the coordination environment of the NiII atom. The title compound contains nine partly disordered solvent water mol­ecules, which create a three-dimensional network of strong O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For general background to the use of organic diphospho­nic acids, see: Matczak-Jon & Videnova-Adrabinska (2005 [triangle]). For applications of transition-metal bis­phospho­nates, see: Eberhardt et al. (2005 [triangle]). For related structures, see: Li et al. (2007 [triangle]); Dudko et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m591-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H8NO6P2)2(H2O)2]·9H2O
  • M r = 664.95
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m591-efi1.jpg
  • a = 15.1408 (3) Å
  • b = 13.1972 (3) Å
  • c = 12.9344 (3) Å
  • β = 106.1689 (11)°
  • V = 2482.27 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 173 K
  • 0.23 × 0.22 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: numerical (SADABS; Bruker, 2005 [triangle]) T min = 0.778, T max = 0.850
  • 48425 measured reflections
  • 6235 independent reflections
  • 5333 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.072
  • S = 1.07
  • 6235 reflections
  • 415 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001531X/ez2208sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001531X/ez2208Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and are tested by the pharmaceutical industry for use as efficient drugs for preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). There is evidence that application of transition metal bisphosphonates can improve fixation of cementless metal implants by enhancing the extent of osseointegration (Eberhardt et al., 2005). In this respect a detailed structure-correlated study of the individual properties and the complex-forming driving factors is desired in order to sufficiently understand bisphosphonate physiological activity.

Several structures of NiII and Zn(II) aminoethylidenediphosphonates have been reported previously (Li et al. 2007). The main difference between these and the title compound is the presence of two water molecules instead of 1,10-phenanthroline in the coordination environment of the transition metal ion (Li et al. 2007).

The asymmetric unit of the title compound contains one molecule of the complex (Fig. 1). Two molecules of 1-aminoethylidenediphosphonic acid chelate the central metal ion via two oxygen atoms from phosphonic groups forming six membered non-planar metallocycles. Two water molecules situated in cis-positions complete the slightly distorted octahedral coordination environment of the NiII. The Ni—O bond lengths have expected values, which correlate with previously reported related structures (Li et al., 2007). The values of the contiguous O—Ni—O angles are in the range of 88.83 (6)° to 92.51 (5)°. The Ni1/O1/P1/C1/P2/O4 and Ni1/O7/P3/C3/P4/O10 metallocycles have envelope conformations with the C1 and C3 atoms 0.8544 (17) Å and 0.7957 (17) Å out of planes, respectively. The dihedral angle between planar fragments Ni1/O1/P1/P2/O4 and Ni1/O7/P3/P4/O10 equals 85.03 (3)°. The coordinated ligands exist in zwitterionic form with proton transfer from one of the phosphonic groups to the amino group, as found for all 1-aminodiphosphonic acids where the amino group does not participate in coordination (Dudko et al., 2009).

The crystal structure of the title compound contains nine solvent water molecules, which interact with the two coordinated water molecules and the hydrophilic phosphonic groups. As a result, a 3-D network of mostly strong O—H···O and N—H···O H-bonds has been found in the structure (Fig. 2; Table 1).

Experimental

Light green crystals of the title compound were obtained from a mixture of 10 ml (10 -2 mol/l) of a water solution of Ni(NO3)2 with a 20 ml (10 -2 mol/l) solution of 1-aminoethylidenediphosphonic acid. The resultant solution was stored in a dark place for slow evaporation. After the 20 days suitable crystals for X-ray data collection were obtained.

Refinement

The refinement of the structure showed two disordered water molecules. O atoms O22 and O23 were split over two sites with occupancies 0.86/0.14 and 0.81/0.19 respectively. The positions with smaller occupancies were both refined isotropically. Hydrogen atoms were found from difference map only for sites with greater occupancy of disordered atom. H atoms bonded to N and O were located in a difference map and refined with Uiso(H) = 1.5Ueq(N) and Uiso(H) = 1.2Ueq(O) respectively. Methyl hydrogens were geometrically constrained and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)].

Figures

Fig. 1.
The molecular structure of the title compound showing the atom labelling scheme and 50% probability displacement ellipsoids for the non-hydrogen atoms. Solvent water molecules are omitted for clarity.
Fig. 2.
Crystal packing of the title compound, projection along c axis. Dashed lines indicate hydrogen bonds.

Crystal data

[Ni(C2H8NO6P2)2(H2O)2]·9H2OF(000) = 1392
Mr = 664.95Dx = 1.779 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9144 reflections
a = 15.1408 (3) Åθ = 2.3–28.4°
b = 13.1972 (3) ŵ = 1.14 mm1
c = 12.9344 (3) ÅT = 173 K
β = 106.1689 (11)°Block, light green
V = 2482.27 (9) Å30.23 × 0.22 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer6235 independent reflections
Radiation source: fine-focus sealed tube5333 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 1.4°
[var phi] and ω scansh = −17→20
Absorption correction: numerical (SADABS; Bruker, 2005)k = −15→17
Tmin = 0.778, Tmax = 0.850l = −17→17
48425 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0345P)2 + 1.5506P] where P = (Fo2 + 2Fc2)/3
6235 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.254825 (15)0.506019 (16)0.523912 (16)0.01040 (6)
P10.39949 (3)0.31363 (3)0.57666 (3)0.01121 (10)
P20.37259 (3)0.41840 (3)0.35969 (3)0.01008 (9)
P30.06502 (3)0.41352 (3)0.36142 (3)0.01021 (9)
P40.09045 (3)0.64384 (3)0.36384 (3)0.01202 (10)
C10.36922 (12)0.29690 (12)0.42905 (13)0.0115 (3)
C20.43105 (13)0.21769 (14)0.39811 (14)0.0168 (4)
H1C0.42430.15280.43190.025*
H2C0.49530.24000.42290.025*
H3C0.41320.20960.31970.025*
C30.06373 (12)0.52864 (13)0.28050 (13)0.0119 (3)
C4−0.02889 (13)0.53922 (15)0.19427 (14)0.0179 (4)
H4C−0.02840.60080.15200.027*
H5C−0.07850.54360.22910.027*
H6C−0.03880.48010.14660.027*
N10.27160 (11)0.25917 (12)0.39567 (12)0.0126 (3)
H1N0.2545 (15)0.2521 (17)0.3304 (19)0.019*
H2N0.2367 (16)0.2994 (18)0.4148 (18)0.019*
H3N0.2685 (15)0.2013 (18)0.4245 (17)0.019*
N20.13780 (11)0.51860 (12)0.22423 (12)0.0146 (3)
H4N0.1273 (15)0.4615 (18)0.1846 (18)0.022*
H5N0.1925 (17)0.5163 (17)0.269 (2)0.022*
H6N0.1398 (15)0.5704 (18)0.1835 (18)0.022*
O10.32986 (8)0.38339 (9)0.60142 (9)0.0134 (2)
O20.40603 (9)0.20946 (9)0.62466 (9)0.0160 (3)
O30.49780 (9)0.36086 (10)0.60780 (10)0.0170 (3)
H3O0.5017 (16)0.4180 (18)0.6090 (18)0.020*
O40.31223 (9)0.49330 (9)0.39539 (10)0.0134 (3)
O50.32244 (9)0.39486 (10)0.23893 (10)0.0153 (3)
H5O0.3493 (16)0.3661 (18)0.2144 (19)0.018*
O60.47117 (8)0.44797 (9)0.37730 (10)0.0159 (3)
O70.15774 (8)0.40580 (9)0.44333 (9)0.0129 (2)
O80.05982 (9)0.32515 (10)0.28082 (10)0.0168 (3)
H8O0.0131 (16)0.2986 (18)0.2607 (18)0.020*
O9−0.01636 (8)0.41774 (10)0.40575 (10)0.0156 (3)
O100.18139 (9)0.62792 (9)0.44657 (9)0.0152 (3)
O110.08907 (9)0.73164 (9)0.28909 (10)0.0166 (3)
O120.00776 (9)0.65624 (10)0.41202 (11)0.0176 (3)
H12O0.0136 (16)0.6311 (18)0.4639 (19)0.021*
O130.35399 (10)0.60034 (11)0.61432 (11)0.0191 (3)
H1310.4115 (18)0.5931 (17)0.6123 (18)0.023*
H1320.3421 (16)0.6536 (19)0.6076 (19)0.023*
O140.18989 (10)0.51133 (10)0.64265 (11)0.0165 (3)
H1410.1422 (18)0.5294 (18)0.6272 (19)0.020*
H1420.2110 (16)0.5442 (17)0.6965 (19)0.020*
O150.19397 (11)0.29225 (11)0.67872 (11)0.0218 (3)
H1510.1539 (18)0.3253 (19)0.673 (2)0.026*
H1520.2340 (17)0.3238 (18)0.6574 (19)0.026*
O160.10537 (12)0.37339 (13)0.06297 (12)0.0288 (3)
H1610.1308 (18)0.317 (2)0.095 (2)0.035*
H1620.1417 (19)0.393 (2)0.035 (2)0.035*
O170.24192 (11)0.06113 (11)0.46573 (12)0.0243 (3)
H1710.2308 (18)0.0144 (19)0.423 (2)0.029*
H1720.2931 (18)0.0380 (19)0.510 (2)0.029*
O180.22367 (11)0.61233 (12)0.83215 (12)0.0263 (3)
H1810.2724 (18)0.6606 (19)0.8440 (19)0.032*
H1820.1789 (18)0.652 (2)0.822 (2)0.032*
O190.55044 (11)0.07361 (13)0.64598 (13)0.0291 (3)
H1910.5136 (19)0.118 (2)0.644 (2)0.035*
H1920.5823 (18)0.0687 (19)0.711 (2)0.035*
O200.30635 (14)0.79284 (13)0.63636 (17)0.0427 (4)
H2010.336 (2)0.851 (2)0.621 (2)0.051*
H2020.332 (2)0.803 (2)0.707 (3)0.051*
O210.39921 (12)−0.05323 (13)0.55580 (15)0.0333 (4)
H2110.447 (2)−0.024 (2)0.593 (2)0.040*
H2120.4083 (19)−0.069 (2)0.493 (2)0.040*
O22A0.67316 (15)0.28256 (16)0.6372 (3)0.0332 (10)0.863 (11)
H2210.613 (2)0.307 (2)0.616 (2)0.040*
H2220.7072 (19)0.321 (2)0.607 (2)0.040*
O23A0.1136 (2)0.6434 (4)0.0445 (4)0.0398 (14)0.81 (2)
H2310.068 (2)0.671 (3)0.025 (3)0.048*
H2320.162 (2)0.684 (2)0.063 (2)0.048*
O22B0.6571 (14)0.2621 (15)0.577 (2)0.058 (6)*0.137 (11)
O23B0.1072 (11)0.6784 (17)0.0740 (16)0.045 (5)*0.19 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.00890 (11)0.01126 (11)0.01095 (10)0.00122 (8)0.00259 (8)−0.00011 (7)
P10.0109 (2)0.0114 (2)0.01128 (18)0.00152 (16)0.00294 (16)0.00155 (15)
P20.0093 (2)0.0103 (2)0.01103 (18)0.00031 (16)0.00354 (15)0.00037 (14)
P30.0084 (2)0.0113 (2)0.01100 (18)−0.00023 (16)0.00281 (15)−0.00083 (15)
P40.0118 (2)0.0113 (2)0.01298 (19)0.00264 (16)0.00346 (16)0.00198 (15)
C10.0107 (8)0.0114 (8)0.0126 (7)0.0006 (6)0.0035 (6)0.0004 (6)
C20.0182 (9)0.0159 (9)0.0181 (8)0.0056 (7)0.0081 (7)0.0008 (6)
C30.0098 (8)0.0147 (8)0.0120 (7)0.0008 (6)0.0043 (6)0.0007 (6)
C40.0142 (9)0.0230 (9)0.0141 (8)0.0009 (7)0.0000 (7)0.0028 (7)
N10.0126 (8)0.0116 (7)0.0140 (7)−0.0005 (6)0.0041 (6)−0.0004 (6)
N20.0133 (8)0.0173 (8)0.0143 (7)0.0009 (6)0.0059 (6)0.0019 (6)
O10.0137 (6)0.0150 (6)0.0122 (5)0.0035 (5)0.0045 (5)0.0013 (4)
O20.0192 (7)0.0135 (6)0.0161 (6)0.0021 (5)0.0062 (5)0.0039 (5)
O30.0121 (6)0.0152 (6)0.0219 (6)−0.0008 (5)0.0016 (5)0.0000 (5)
O40.0146 (6)0.0119 (6)0.0157 (6)0.0023 (5)0.0076 (5)0.0011 (4)
O50.0159 (7)0.0181 (7)0.0121 (6)0.0019 (5)0.0043 (5)−0.0010 (5)
O60.0109 (6)0.0162 (6)0.0216 (6)−0.0006 (5)0.0063 (5)0.0002 (5)
O70.0108 (6)0.0111 (6)0.0152 (6)0.0000 (5)0.0008 (5)0.0004 (4)
O80.0140 (7)0.0168 (6)0.0201 (6)−0.0043 (5)0.0056 (5)−0.0069 (5)
O90.0106 (6)0.0205 (6)0.0175 (6)0.0024 (5)0.0067 (5)0.0021 (5)
O100.0153 (6)0.0120 (6)0.0163 (6)0.0010 (5)0.0010 (5)0.0004 (4)
O110.0160 (7)0.0148 (6)0.0191 (6)0.0028 (5)0.0053 (5)0.0064 (5)
O120.0185 (7)0.0195 (7)0.0175 (6)0.0064 (5)0.0095 (5)0.0050 (5)
O130.0123 (7)0.0156 (6)0.0281 (7)0.0001 (5)0.0035 (5)−0.0060 (5)
O140.0121 (7)0.0230 (7)0.0145 (6)0.0048 (5)0.0035 (5)−0.0009 (5)
O150.0212 (8)0.0214 (7)0.0235 (7)0.0042 (6)0.0076 (6)0.0070 (5)
O160.0346 (9)0.0312 (8)0.0223 (7)0.0067 (7)0.0107 (6)0.0034 (6)
O170.0247 (8)0.0186 (7)0.0265 (7)−0.0006 (6)0.0018 (6)0.0005 (6)
O180.0244 (8)0.0219 (7)0.0317 (8)0.0003 (6)0.0061 (6)−0.0026 (6)
O190.0262 (9)0.0312 (9)0.0286 (8)0.0084 (7)0.0058 (7)−0.0019 (6)
O200.0493 (12)0.0245 (9)0.0553 (11)−0.0003 (8)0.0161 (9)−0.0062 (8)
O210.0259 (9)0.0301 (9)0.0413 (9)0.0024 (7)0.0051 (7)−0.0056 (7)
O22A0.0208 (12)0.0242 (11)0.058 (2)0.0042 (8)0.0156 (10)0.0154 (10)
O23A0.0491 (18)0.038 (2)0.0339 (18)0.0057 (12)0.0146 (12)0.0157 (15)

Geometric parameters (Å, °)

Ni1—O12.0689 (12)N1—H3N0.86 (2)
Ni1—O42.0861 (13)N2—H4N0.90 (2)
Ni1—O72.0355 (12)N2—H5N0.87 (2)
Ni1—O102.0508 (12)N2—H6N0.87 (2)
Ni1—O132.0477 (13)O3—H3O0.76 (2)
Ni1—O142.0424 (14)O5—H5O0.69 (2)
P1—O11.4999 (13)O8—H8O0.77 (2)
P1—O21.5003 (12)O12—H12O0.73 (2)
P1—O31.5596 (14)O13—H1310.88 (3)
P1—C11.8484 (16)O13—H1320.72 (2)
P2—O61.4976 (13)O14—H1410.73 (2)
P2—O41.5035 (13)O14—H1420.81 (2)
P2—O51.5660 (13)O15—H1510.73 (3)
P2—C11.8449 (17)O15—H1520.84 (3)
P3—O91.4978 (13)O16—H1610.88 (3)
P3—O71.5085 (12)O16—H1620.78 (3)
P3—O81.5515 (13)O17—H1710.81 (3)
P3—C31.8419 (17)O17—H1720.88 (3)
P4—O101.5048 (12)O18—H1810.95 (3)
P4—O111.5056 (12)O18—H1820.83 (3)
P4—O121.5547 (14)O19—H1910.81 (3)
P4—C31.8423 (17)O19—H1920.85 (3)
C1—N11.505 (2)O20—H2010.94 (3)
C1—C21.529 (2)O20—H2020.90 (3)
C2—H1C0.9800O21—H2110.85 (3)
C2—H2C0.9800O21—H2120.88 (3)
C2—H3C0.9800O22A—H2210.94 (3)
C3—N21.503 (2)O22A—H2220.89 (3)
C3—C41.536 (2)O23A—H2310.76 (3)
C4—H4C0.9800O23A—H2320.89 (3)
C4—H5C0.9800O22B—H2211.12 (3)
C4—H6C0.9800O22B—H2221.08 (3)
N1—H1N0.82 (2)O23B—H2310.75 (3)
N1—H2N0.83 (2)O23B—H2320.88 (3)
O1—Ni1—O491.65 (5)H2C—C2—H3C109.5
O7—Ni1—O1092.51 (5)N2—C3—C4108.05 (14)
O14—Ni1—O1388.83 (6)N2—C3—P3108.13 (11)
O7—Ni1—O1488.69 (5)C4—C3—P3110.53 (12)
O7—Ni1—O13175.95 (5)N2—C3—P4106.51 (12)
O14—Ni1—O1091.76 (5)C4—C3—P4110.93 (12)
O13—Ni1—O1090.77 (5)P3—C3—P4112.48 (9)
O7—Ni1—O187.74 (5)C3—C4—H4C109.5
O14—Ni1—O188.67 (5)C3—C4—H5C109.5
O13—Ni1—O188.99 (5)H4C—C4—H5C109.5
O10—Ni1—O1179.50 (5)C3—C4—H6C109.5
O7—Ni1—O486.64 (5)H4C—C4—H6C109.5
O14—Ni1—O4175.30 (5)H5C—C4—H6C109.5
O13—Ni1—O495.86 (5)C1—N1—H1N109.7 (16)
O10—Ni1—O487.94 (5)C1—N1—H2N110.9 (15)
O1—P1—O2116.32 (7)H1N—N1—H2N110 (2)
O1—P1—O3112.12 (7)C1—N1—H3N109.8 (14)
O2—P1—O3108.12 (7)H1N—N1—H3N108 (2)
O1—P1—C1107.88 (7)H2N—N1—H3N109 (2)
O2—P1—C1106.67 (7)C3—N2—H4N108.2 (15)
O3—P1—C1105.00 (8)C3—N2—H5N112.4 (16)
O6—P2—O4116.57 (7)H4N—N2—H5N109 (2)
O6—P2—O5112.91 (8)C3—N2—H6N112.4 (15)
O4—P2—O5105.62 (7)H4N—N2—H6N110 (2)
O6—P2—C1108.30 (8)H5N—N2—H6N104 (2)
O4—P2—C1108.70 (8)P1—O1—Ni1134.46 (7)
O5—P2—C1103.96 (7)P1—O3—H3O117.9 (18)
O9—P3—O7115.95 (7)P2—O4—Ni1136.17 (7)
O9—P3—O8113.07 (8)P2—O5—H5O112.4 (19)
O7—P3—O8106.51 (7)P3—O7—Ni1135.55 (7)
O9—P3—C3107.89 (8)P3—O8—H8O116.2 (18)
O7—P3—C3108.38 (7)P4—O10—Ni1136.12 (8)
O8—P3—C3104.34 (7)P4—O12—H12O114.5 (19)
O10—P4—O11114.22 (7)Ni1—O13—H131119.3 (15)
O10—P4—O12114.15 (7)Ni1—O13—H132113.7 (19)
O11—P4—O12107.92 (7)H131—O13—H132108 (2)
O10—P4—C3108.02 (7)Ni1—O14—H141116.7 (19)
O11—P4—C3107.33 (7)Ni1—O14—H142120.6 (17)
O12—P4—C3104.55 (8)H141—O14—H142101 (2)
N1—C1—C2108.83 (14)H151—O15—H152109 (3)
N1—C1—P2107.83 (11)H161—O16—H162102 (3)
C2—C1—P2111.41 (12)H171—O17—H17299 (2)
N1—C1—P1106.09 (11)H181—O18—H182100 (2)
C2—C1—P1110.99 (11)H191—O19—H192106 (3)
P2—C1—P1111.47 (9)H201—O20—H20290 (2)
C1—C2—H1C109.5H211—O21—H212108 (3)
C1—C2—H2C109.5H221—O22A—H222108 (2)
H1C—C2—H2C109.5H231—O23A—H232115 (3)
C1—C2—H3C109.5H221—O22B—H22285 (3)
H1C—C2—H3C109.5H231—O23B—H232117 (4)
O6—P2—C1—N1−170.58 (11)O12—P4—C3—C457.74 (14)
O4—P2—C1—N161.89 (12)O10—P4—C3—P355.30 (11)
O5—P2—C1—N1−50.27 (13)O11—P4—C3—P3178.91 (9)
O6—P2—C1—C2−51.23 (13)O12—P4—C3—P3−66.64 (10)
O4—P2—C1—C2−178.76 (11)O2—P1—O1—Ni1−153.15 (9)
O5—P2—C1—C269.08 (13)O3—P1—O1—Ni181.70 (11)
O6—P2—C1—P173.36 (10)C1—P1—O1—Ni1−33.43 (12)
O4—P2—C1—P1−54.17 (11)O7—Ni1—O1—P187.56 (11)
O5—P2—C1—P1−166.33 (9)O14—Ni1—O1—P1176.31 (11)
O1—P1—C1—N1−55.84 (12)O13—Ni1—O1—P1−94.84 (11)
O2—P1—C1—N169.81 (12)O4—Ni1—O1—P11.00 (11)
O3—P1—C1—N1−175.58 (11)O6—P2—O4—Ni1−104.40 (11)
O1—P1—C1—C2−173.91 (12)O5—P2—O4—Ni1129.32 (11)
O2—P1—C1—C2−48.25 (14)C1—P2—O4—Ni118.27 (13)
O3—P1—C1—C266.35 (14)O7—Ni1—O4—P2−79.32 (11)
O1—P1—C1—P261.27 (11)O13—Ni1—O4—P297.48 (11)
O2—P1—C1—P2−173.07 (8)O10—Ni1—O4—P2−171.96 (11)
O3—P1—C1—P2−58.47 (11)O1—Ni1—O4—P28.33 (11)
O9—P3—C3—N2−172.77 (11)O9—P3—O7—Ni1−91.92 (12)
O7—P3—C3—N260.95 (12)O8—P3—O7—Ni1141.28 (10)
O8—P3—C3—N2−52.26 (12)C3—P3—O7—Ni129.52 (13)
O9—P3—C3—C4−54.68 (14)O14—Ni1—O7—P389.45 (11)
O7—P3—C3—C4179.03 (12)O10—Ni1—O7—P3−2.25 (11)
O8—P3—C3—C465.82 (14)O1—Ni1—O7—P3178.18 (11)
O9—P3—C3—P469.91 (10)O4—Ni1—O7—P3−90.04 (11)
O7—P3—C3—P4−56.38 (11)O11—P4—O10—Ni1−146.97 (10)
O8—P3—C3—P4−169.59 (9)O12—P4—O10—Ni188.17 (12)
O10—P4—C3—N2−62.98 (12)C3—P4—O10—Ni1−27.64 (13)
O11—P4—C3—N260.62 (12)O7—Ni1—O10—P41.17 (12)
O12—P4—C3—N2175.08 (10)O14—Ni1—O10—P4−87.60 (12)
O10—P4—C3—C4179.67 (12)O13—Ni1—O10—P4−176.46 (12)
O11—P4—C3—C4−56.72 (14)O4—Ni1—O10—P487.71 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O15i0.82 (2)2.01 (2)2.807 (2)166 (2)
N1—H2N···O70.83 (2)1.95 (2)2.773 (2)172 (2)
N1—H3N···O170.86 (2)2.00 (2)2.843 (2)169 (2)
N2—H4N···O160.90 (2)1.91 (2)2.774 (2)160 (2)
N2—H5N···O40.87 (2)2.10 (3)2.955 (2)169 (2)
N2—H6N···O23A0.87 (2)1.98 (2)2.789 (3)154 (2)
O3—H3O···O6ii0.76 (2)1.81 (2)2.5637 (18)172 (2)
O5—H5O···O2i0.69 (2)1.91 (2)2.5930 (18)170 (3)
O8—H8O···O11iii0.77 (2)1.74 (2)2.5075 (18)176 (3)
O12—H12O···O9iv0.73 (2)1.79 (2)2.5209 (18)172 (3)
O13—H131···O6ii0.88 (3)1.83 (3)2.696 (2)167 (2)
O13—H132···O200.72 (2)1.98 (3)2.678 (2)162 (3)
O14—H141···O9iv0.73 (2)1.96 (3)2.6936 (19)176 (3)
O14—H142···O180.81 (2)1.93 (2)2.711 (2)162 (2)
O15—H151···O12iv0.73 (3)2.40 (3)3.029 (2)145 (2)
O15—H152···O10.84 (3)1.96 (3)2.797 (2)174 (2)
O16—H161···O15i0.88 (3)1.90 (3)2.775 (2)172 (2)
O16—H162···O17i0.78 (3)2.06 (3)2.838 (2)177 (3)
O17—H171···O18i0.81 (3)2.03 (3)2.835 (2)170 (3)
O17—H172···O210.88 (3)1.96 (3)2.786 (2)155 (2)
O18—H181···O22Av0.95 (3)1.79 (3)2.702 (2)158 (2)
O18—H182···O11vi0.83 (3)2.02 (3)2.841 (2)168 (2)
O19—H191···O20.81 (3)1.98 (3)2.781 (2)169 (3)
O19—H192···O13vii0.85 (3)2.23 (3)3.055 (2)163 (2)
O20—H201···O21viii0.94 (3)1.91 (3)2.829 (3)164 (3)
O20—H202···O22Av0.90 (3)2.05 (3)2.861 (4)149 (3)
O21—H211···O190.85 (3)1.99 (3)2.814 (2)163 (3)
O21—H212···O19ix0.88 (3)2.06 (3)2.928 (3)166 (3)
O22A—H221···O30.94 (3)1.86 (3)2.775 (2)167 (3)
O22A—H222···O10ii0.89 (3)2.10 (3)2.958 (3)161 (2)
O23A—H231···O16x0.76 (3)2.62 (3)3.225 (4)139 (3)
O23A—H232···O20xi0.89 (3)2.14 (3)2.951 (4)150 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+1, −z+1; (v) −x+1, y+1/2, −z+3/2; (vi) x, −y+3/2, z+1/2; (vii) −x+1, y−1/2, −z+3/2; (viii) x, y+1, z; (ix) −x+1, −y, −z+1; (x) −x, −y+1, −z; (xi) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2208).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dudko, A., Bon, V., Kozachkova, A. & Pekhnyo, V. (2009). Acta Cryst. E65, m459. [PMC free article] [PubMed]
  • Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci.10, 622–626. [PubMed]
  • Li, M., Xiang, J., Wu, S., Chen, S., Yuan, L., Li, H., He, H. & Sun, J. (2007). J. Mol. Struct.840, 119–124.
  • Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev.249, 2458–2488.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography