PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1065–o1066.
Published online 2010 April 14. doi:  10.1107/S160053681001233X
PMCID: PMC2979173

(E)-4-Chloro-2-[(2-hydroxy­phenyl)­iminometh­yl]phenol

Abstract

The title compound, C13H10ClNO2, exists in a trans configuration about the central C=N bond. The two benzene rings are almost coplanar, making a dihedral angle of 2.48 (10)°. An intra­molecular O—H(...)N hydrogen bond generates an S(6) ring motif. In the crystal structure, O—H(...)O hydrogen bonds link the mol­ecules into chains along [101]. Short C(...)Cl contacts [3.584 (2)–3.646 (2) Å] are observed. A short intramolecular C—H(...)O contact occurs.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For background to Schiff bases and their applications, see: Dao et al. (2000 [triangle]); Eltayeb & Ahmed (2005a [triangle],b [triangle]); Karthikeyan et al. (2006 [triangle]); Sriram et al. (2006 [triangle]); Wei & Atwood (1998 [triangle]). For related structures, see: Eltayeb et al. (2007a [triangle],b [triangle]); Pu (2008 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1065-scheme1.jpg

Experimental

Crystal data

  • C13H10ClNO2
  • M r = 247.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1065-efi1.jpg
  • a = 4.6681 (9) Å
  • b = 18.509 (3) Å
  • c = 6.2118 (11) Å
  • β = 90.980 (4)°
  • V = 536.63 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 100 K
  • 0.55 × 0.14 × 0.07 mm

Data collection

  • Bruker APEX Duo CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.834, T max = 0.976
  • 4593 measured reflections
  • 2680 independent reflections
  • 2569 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.119
  • S = 1.20
  • 2680 reflections
  • 154 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1125 Friedel pairs
  • Flack parameter: −0.03 (7)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001233X/is2534sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001233X/is2534Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the RU research grants (PKIMIA/815002, and PKIMIA/811120). NEE would like to acknowledge Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

We have been interested in synthesis of Schiff base ligands and their complexes (Eltayeb et al., 2007a,b) due to their applications such as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b), pharmacological activities, anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) activities. The title compound was used to synthesis the chelated borate catalyst (Wei & Atwood, 1998). Herein we report the crystal structure of the title Schiff base ligand (I).

The molecule of (I) (Fig. 1), C13H10ClNO2, crystallizes in a trans configuration about the C═N bond [1.312 (3) Å] with a torsion angle C1–N1–C7–C8 = -179.2 (2)°. The molecule is almost planar with a dihedral angle between the two benzene rings being 2.48 (10)°. The chloro and two hydroxy groups lie on the same plane with their attached benzene rings with the r.m.s. of 0.0105 (2) Å for the seven non H atoms (C1, C2, C3, C4, C5, C6 and O1) and 0.0129 (2) Å for the eight non H atoms (C8, C9, C10, C11, C12, C13, O2 and Cl1). An intramolecular O—H···N hydrogen bond between the imine N atom and one hydroxy group generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are of normal values (Allen et al., 1987) and are comparable with the related structure (Pu, 2008).

In the crystal packing (Fig. 2) , O—H···O hydrogen bonds (Table 1) which formed between the two hydroxy O atoms link the molecules into into chains along the [101] direction. The crystal is consolidated by O—H···O hydrogen bonds (Table 1) and C···Cl [3.584 (2)–3.646 (2) Å] short contacts.

Experimental

The title compound was synthesized by adding 5-chloro-2-hydroxybenzaldehyde (0.312 g, 2 mmol) to the solution of 2-aminophenol (0.218 g, 2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant yellow-orange solution was filtered and the filtrate was evaporated to give a yellow solid product. Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were obtained from ethanol by slow evaporation at room temperature after a few days.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(O—H) = 0.82 Å and d(C—H) = 0.93 Å. The Uiso(H) values were constrained to be 1.2Ueq of the carrier atoms. The highest residual electron density peak is located at 0.70 Å from C5 and the deepest hole is located at 0.05 Å from H1O2.

Figures

Fig. 1.
The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. The hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing of the title compound viewed down the a axis, showing chains running along the [101] direction. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H10ClNO2F(000) = 256
Mr = 247.67Dx = 1.533 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2680 reflections
a = 4.6681 (9) Åθ = 4.4–30.0°
b = 18.509 (3) ŵ = 0.34 mm1
c = 6.2118 (11) ÅT = 100 K
β = 90.980 (4)°Needle, yellow
V = 536.63 (17) Å30.55 × 0.14 × 0.07 mm
Z = 2

Data collection

Bruker APEX Duo CCD area detector diffractometer2680 independent reflections
Radiation source: sealed tube2569 reflections with I > 2σ(I)
graphiteRint = 0.023
[var phi] and ω scansθmax = 30.0°, θmin = 4.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −6→6
Tmin = 0.834, Tmax = 0.976k = −24→26
4593 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.119w = 1/[σ2(Fo2) + (0.0756P)2 + 0.0404P] where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
2680 reflectionsΔρmax = 0.47 e Å3
154 parametersΔρmin = −0.47 e Å3
1 restraintAbsolute structure: Flack (1983), 1125 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (7)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.02845 (11)1.08595 (3)0.36240 (8)0.01689 (14)
O11.1428 (4)0.82828 (9)0.5209 (2)0.0167 (3)
H1O11.28170.83790.59830.025*
O20.5318 (4)0.86922 (9)−0.2123 (2)0.0151 (3)
H1O20.65500.8463−0.14620.018*
N10.8674 (4)0.83076 (10)0.1062 (3)0.0116 (3)
C11.0806 (4)0.78021 (11)0.1679 (3)0.0113 (4)
C21.2187 (4)0.77923 (11)0.3724 (3)0.0119 (4)
C31.4270 (5)0.72625 (12)0.4139 (3)0.0144 (4)
H31.51360.72360.54960.017*
C41.5066 (5)0.67719 (12)0.2539 (4)0.0157 (4)
H41.64810.64300.28280.019*
C51.3732 (5)0.67964 (12)0.0506 (4)0.0147 (4)
H51.42550.6471−0.05590.018*
C61.1629 (5)0.73071 (12)0.0089 (3)0.0140 (4)
H61.07470.7323−0.12640.017*
C70.7386 (5)0.87972 (12)0.2228 (3)0.0122 (4)
H70.78860.88450.36770.015*
C80.5237 (5)0.92579 (11)0.1321 (3)0.0114 (4)
C90.4240 (5)0.91833 (11)−0.0859 (3)0.0115 (4)
C100.2019 (5)0.96567 (12)−0.1572 (3)0.0132 (4)
H100.13280.9622−0.29810.016*
C110.0865 (5)1.01690 (12)−0.0213 (3)0.0136 (4)
H11−0.05721.0476−0.07200.016*
C120.1857 (5)1.02276 (11)0.1934 (3)0.0127 (4)
C130.4000 (5)0.97834 (12)0.2706 (3)0.0124 (4)
H130.46410.98250.41260.015*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0209 (3)0.0156 (2)0.0141 (2)0.00493 (18)−0.00206 (15)−0.0037 (2)
O10.0172 (8)0.0217 (8)0.0111 (7)0.0046 (6)−0.0046 (5)−0.0049 (6)
O20.0166 (8)0.0178 (8)0.0108 (7)0.0039 (5)−0.0021 (5)−0.0036 (6)
N10.0124 (8)0.0118 (8)0.0106 (8)−0.0001 (6)−0.0010 (5)−0.0005 (6)
C10.0108 (9)0.0113 (9)0.0116 (9)0.0006 (7)−0.0013 (6)0.0001 (7)
C20.0120 (9)0.0139 (9)0.0098 (9)−0.0003 (6)−0.0006 (6)0.0006 (7)
C30.0148 (10)0.0187 (11)0.0097 (9)0.0017 (7)−0.0025 (6)0.0017 (8)
C40.0143 (10)0.0143 (10)0.0183 (11)0.0024 (7)−0.0012 (7)0.0015 (8)
C50.0157 (10)0.0145 (10)0.0140 (10)−0.0002 (7)0.0012 (7)−0.0013 (8)
C60.0152 (10)0.0154 (10)0.0113 (10)−0.0010 (7)−0.0011 (7)−0.0025 (7)
C70.0117 (9)0.0138 (9)0.0111 (9)0.0001 (6)0.0000 (6)0.0000 (7)
C80.0120 (9)0.0128 (9)0.0092 (9)0.0002 (6)−0.0012 (6)−0.0003 (7)
C90.0126 (10)0.0130 (9)0.0090 (9)0.0001 (7)−0.0002 (6)0.0004 (7)
C100.0155 (10)0.0157 (9)0.0083 (9)0.0009 (7)−0.0011 (7)0.0016 (7)
C110.0142 (10)0.0134 (9)0.0132 (10)0.0006 (7)−0.0008 (6)0.0016 (8)
C120.0143 (10)0.0121 (9)0.0117 (9)−0.0007 (7)0.0017 (6)−0.0012 (8)
C130.0138 (10)0.0155 (10)0.0077 (9)−0.0011 (7)−0.0001 (6)−0.0005 (7)

Geometric parameters (Å, °)

Cl1—C121.742 (2)C5—C61.384 (3)
O1—C21.346 (3)C5—H50.9300
O1—H1O10.8200C6—H60.9300
O2—C91.308 (3)C7—C81.425 (3)
O2—H1O20.8200C7—H70.9300
N1—C71.312 (3)C8—C131.427 (3)
N1—C11.414 (3)C8—C91.431 (3)
C1—C61.405 (3)C9—C101.422 (3)
C1—C21.415 (3)C10—C111.385 (3)
C2—C31.402 (3)C10—H100.9300
C3—C41.401 (3)C11—C121.408 (3)
C3—H30.9300C11—H110.9300
C4—C51.399 (3)C12—C131.375 (3)
C4—H40.9300C13—H130.9300
C2—O1—H1O1109.5N1—C7—C8121.39 (19)
C9—O2—H1O2109.5N1—C7—H7119.3
C7—N1—C1129.38 (18)C8—C7—H7119.3
C6—C1—N1116.14 (18)C7—C8—C13117.29 (18)
C6—C1—C2119.79 (18)C7—C8—C9122.13 (19)
N1—C1—C2124.01 (19)C13—C8—C9120.52 (18)
O1—C2—C3122.39 (18)O2—C9—C10121.83 (18)
O1—C2—C1119.04 (18)O2—C9—C8120.86 (18)
C3—C2—C1118.56 (19)C10—C9—C8117.30 (18)
C4—C3—C2120.96 (19)C11—C10—C9121.41 (18)
C4—C3—H3119.5C11—C10—H10119.3
C2—C3—H3119.5C9—C10—H10119.3
C5—C4—C3120.0 (2)C10—C11—C12120.33 (19)
C5—C4—H4120.0C10—C11—H11119.8
C3—C4—H4120.0C12—C11—H11119.8
C6—C5—C4119.6 (2)C13—C12—C11120.7 (2)
C6—C5—H5120.2C13—C12—Cl1120.17 (16)
C4—C5—H5120.2C11—C12—Cl1119.16 (17)
C5—C6—C1121.0 (2)C12—C13—C8119.77 (19)
C5—C6—H6119.5C12—C13—H13120.1
C1—C6—H6119.5C8—C13—H13120.1
C7—N1—C1—C6175.5 (2)N1—C7—C8—C94.0 (3)
C7—N1—C1—C2−7.2 (4)C7—C8—C9—O2−1.3 (3)
C6—C1—C2—O1178.20 (19)C13—C8—C9—O2−178.44 (19)
N1—C1—C2—O11.0 (3)C7—C8—C9—C10177.9 (2)
C6—C1—C2—C3−2.8 (3)C13—C8—C9—C100.8 (3)
N1—C1—C2—C3180.0 (2)O2—C9—C10—C11179.1 (2)
O1—C2—C3—C4−178.3 (2)C8—C9—C10—C11−0.1 (3)
C1—C2—C3—C42.8 (3)C9—C10—C11—C12−0.6 (3)
C2—C3—C4—C5−1.4 (3)C10—C11—C12—C130.6 (3)
C3—C4—C5—C60.0 (3)C10—C11—C12—Cl1−178.08 (17)
C4—C5—C6—C1−0.1 (3)C11—C12—C13—C80.1 (3)
N1—C1—C6—C5178.9 (2)Cl1—C12—C13—C8178.79 (15)
C2—C1—C6—C51.5 (3)C7—C8—C13—C12−178.1 (2)
C1—N1—C7—C8−179.2 (2)C9—C8—C13—C12−0.8 (3)
N1—C7—C8—C13−178.77 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.821.742.553 (2)169
O2—H1O2···N10.821.862.602 (2)149
C7—H7···O10.932.162.789 (3)124

Symmetry codes: (i) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2534).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem 35, 805–813. [PubMed]
  • Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Technol 6, 51–59.
  • Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci 7, 97–108.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007a). Acta Cryst. E63, o3094–o3095.
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, m2269–m2270.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem 14, 7482–7489. [PubMed]
  • Pu, X.-H. (2008). Acta Cryst. E64, o1734. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst D65, 148–155. [PMC free article] [PubMed]
  • Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett 16, 2127–2129. [PubMed]
  • Wei, P. & Atwood, D. A. (1998). Inorg. Chem 37, 4934–4938. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography