PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1184–o1185.
Published online 2010 April 28. doi:  10.1107/S1600536810014819
PMCID: PMC2979160

Bis[2-(2,4-dinitro­benz­yl)pyridinium] biphenyl-4,4′-disulfonate trihydrate

Abstract

In the structure of the title salt, 2C12H10N3O4 +·C12H8O6S2 2−·3H2O, determined at 173 K, the biphenyl-4,4′-disulfonate dianions lie across crystallographic inversion centres with the sulfonate groups inter­acting head-to-head through centrosymmetric cyclic bis­(water)-bridged hydrogen-bonding associations [graph set R 4 4(11)], forming chains. The 2-(2,4-dinitro­benz­yl)pyridinium cations are linked to these chains through pyridinium–water N—H(...)O hydrogen bonds and a two-dimensional network is formed through water bridges between sulfonate and 2-nitro O atoms, while the structure also has weak cation–anion π–π aromatic ring inter­actions [minimum ring centroid separation = 3.8441 (13) Å].

Related literature

For structural data on 2-(2,4-dinitro­benz­yl)pyridine and related compounds, see Seff & Trueblood (1968 [triangle]); Scherl et al. (1996 [triangle]); Naumov et al. (2002 [triangle], 2005 [triangle]). For bipyridine-4,4′-disulfonate compounds, see: Swift et al. (1998 [triangle]); Swift & Ward (1998 [triangle]); Holman & Ward (2000 [triangle]); Liao et al. (2001 [triangle]). For graph-set notation, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1184-scheme1.jpg

Experimental

Crystal data

  • 2C12H10N3O4 +·C12H8O6S2 2−·3H2O
  • M r = 886.83
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1184-efi1.jpg
  • a = 8.3897 (3) Å
  • b = 10.6455 (4) Å
  • c = 11.7405 (5) Å
  • α = 97.879 (3)°
  • β = 96.926 (3)°
  • γ = 112.066 (4)°
  • V = 945.53 (7) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 173 K
  • 0.30 × 0.25 × 0.15 mm

Data collection

  • Oxford Diffraction Gemini-S CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.98, T max = 0.99
  • 8964 measured reflections
  • 3844 independent reflections
  • 3441 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.104
  • S = 1.03
  • 3844 reflections
  • 296 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) within WinGX (Farrugia, 1999 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014819/ng2763sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014819/ng2763Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Australian Research Council, the Faculty of Science and Technology, Queensland University of Technology, and the School of Biomolecular and Physical Sciences, Griffith University.

supplementary crystallographic information

Comment

The Lewis base 2-(2,4-dinitrobenzyl)pyridine (DNBP) has been a compound of considerable interest for more than 40 years because of its unusual photochromic characteristics. Irradiation of the colourless crystals with light of wavelength 400nm or less results in the formation of a deep blue coloration in a reversible tautomeric reaction. The structure of the colourless form has been determined (Seff & Trueblood, 1968; Scherl et al., 1996), while in another determination (Naumov et al., 2002), the structures of both forms were determined, confirming the presence of two-photon excitation giving nitro-assisted proton transfer (NAPT) involving an oxygen of the o-nitro substituent group. The effect is not present in the p-nitro-substituted isomer. Although the structure of the chloride salt of DNBP is known (Naumov et al., 2005), no other examples of analogous compounds are present in the CSD.

Of a number of reactions of DNBP with aromatic carboxylic and sulfonic acids in 50% ethanol–water, we found that only one, biphenyl-4,4'-disulfonic acid (BPDS) gave crystals of suitable quality for X-ray analysis, the title compound 2(C12H10N3O4+) C12H8O6S22- . 3H2O (I), the structure of which is reported here. The structures of 1:2 proton-transfer compounds of BPDS are also not prevalent, e.g. with β-alanine (Liao et al., 2001), but the bis(guanidinium) salt is notable as a co-host structure for cooperative guest recognition in clathrate formation with numerous aromatic monocyclic and polycyclic hydrocarbons (Swift & Ward, 1998; Swift et al., 1998; Holman & Ward, 2000).

With compound (I) (Fig. 1), the BPDS dianions lie across crystallographic inversion centres with the sulfonate groups interacting head-to-head through centrosymmetric cyclic bis(water)-bridged hydrogen-bonding associations [graph set R44(11) (Etter et al., 1990)], forming one-dimensional chain structures (Fig 2). The cations are linked to these chains through pyridinium N+–H···Owater hydrogen bonds (Table 1). The second water molecule (O2W) which has only 50% occupancy, forms a Osulfonate···H–O–H···Oo-nitro hydrogen bond, bridging the chains down the b axial direction, giving a two-dimensional network structure. There are also weak cation–anion π–π aromatic ring interactions present [minimum ring centroid separation 3.8441 (13) Å]. The hydrogen-bond-constrained o-nitro group in the DNBPY cation in the structure obviates any possible photochromic effects in this compound.

Also present in the BPDS dianions are short intramolecular H2A···H6Aiii/H6A···H2Aiii contacts (2.01 Å) [symmetry code (iii) -x + 2, -y + 1, -z +1] resulting from the BPDS species being planar. There is also a short intramolecular H···H contact involving an aromatic ring H and one of the water H atoms [H6···H22Wi, 2.06 Å]. With the DNBP cation the associated o-nitro group is rotated out of the plane of the benzene ring while the unassociated p-nitro group is essentially coplanar [torsion angles C11–C21–N21–O22, 149.17 (19)° and C31–C41–N41–O42, 178.02 (9)°].

Experimental

The title compound was synthesized by heating together under reflux for 10 minutes, 1 mmol quantities of 2-(2,4-dinitrobenzyl)pyridine with biphenyl-4,4'-disulfonic acid in 50 ml of 50% ethanol–water. After concentration to ca. 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless blade-shaped flat prisms (m.p. 413 K) from which a block section was cleaved for the X-ray analysis.

Refinement

Hydrogen atoms involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinement at calculated positions [C–H = 0.93 Å (aromatic) and 0.97 Å (aliphatic) and with Uiso(H) = 1.2Ueq(C)], and treated as riding. One of the water molecules was found to have partial occupancy which was refined to 0.50 (1) and subsequently set invariant.

Figures

Fig. 1.
Molecular configuration and atom naming scheme for the DNBP cation, the BPDS dianion and the two water molecules of solvation [O1W , O2W, with the latter having SOF = 0.5 (1)], in the asymmetric unit of (I). The dianion lies across an inversion ...
Fig. 2.
The two-dimensional hydrogen-bonded network structure of (I) extending viewed down the approximate a cell direction showing the water-linked BPDS chains and water-bridged extensions down b. Hydrogen bonds are shown as dashed lines and non-interactive ...

Crystal data

2C12H10N3O4+·C12H8O6S22·3H2OZ = 1
Mr = 886.83F(000) = 460
Triclinic, P1Dx = 1.557 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 8.3897 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6455 (4) ÅCell parameters from 5908 reflections
c = 11.7405 (5) Åθ = 3.0–32.3°
α = 97.879 (3)°µ = 0.23 mm1
β = 96.926 (3)°T = 173 K
γ = 112.066 (4)°Prism, colourless
V = 945.53 (7) Å30.30 × 0.25 × 0.15 mm

Data collection

Oxford Diffraction Gemini-S CCD-detector diffractometer3844 independent reflections
Radiation source: Enhance (Mo) X-ray source3441 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 16.08 pixels mm-1θmax = 26.5°, θmin = 3.0°
ω scansh = −10→10
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −13→13
Tmin = 0.98, Tmax = 0.99l = −14→14
8964 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0505P)2 + 0.4454P] where P = (Fo2 + 2Fc2)/3
3844 reflections(Δ/σ)max = 0.001
296 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O210.5436 (2)0.07535 (18)0.71892 (15)0.0487 (6)
O220.51554 (19)0.13704 (18)0.55354 (14)0.0460 (5)
O410.9552 (2)0.10842 (19)0.32892 (14)0.0548 (6)
O421.2220 (2)0.1865 (2)0.41565 (15)0.0627 (7)
N10.7507 (2)0.15288 (18)1.02586 (14)0.0291 (5)
N210.6039 (2)0.12314 (17)0.63793 (15)0.0319 (5)
N411.0680 (2)0.15615 (18)0.41645 (15)0.0350 (5)
C20.8078 (2)0.1261 (2)0.92656 (16)0.0276 (5)
C30.8089 (3)−0.0026 (2)0.89375 (18)0.0348 (6)
C40.7505 (3)−0.1008 (2)0.9630 (2)0.0403 (7)
C50.6935 (3)−0.0690 (2)1.06403 (19)0.0400 (7)
C60.6954 (3)0.0601 (2)1.09439 (18)0.0364 (7)
C110.9122 (2)0.21211 (18)0.74513 (16)0.0256 (5)
C210.7921 (2)0.16202 (18)0.63956 (16)0.0260 (5)
C310.8394 (2)0.14506 (19)0.53166 (17)0.0278 (5)
C411.0145 (2)0.17560 (19)0.53089 (16)0.0275 (5)
C511.1393 (2)0.2235 (2)0.63196 (17)0.0303 (6)
C611.0871 (2)0.2431 (2)0.73779 (17)0.0291 (6)
C710.8663 (3)0.2446 (2)0.86313 (17)0.0318 (6)
S4A0.60027 (6)0.49714 (5)0.81725 (4)0.0279 (2)
O41A0.71609 (19)0.57569 (16)0.92704 (12)0.0391 (5)
O42A0.51335 (19)0.35151 (15)0.81872 (14)0.0412 (5)
O43A0.4786 (2)0.55635 (18)0.77623 (13)0.0436 (5)
C1A0.9443 (2)0.50258 (19)0.54441 (16)0.0272 (6)
C2A0.7662 (3)0.4645 (3)0.51220 (19)0.0576 (9)
C3A0.6617 (3)0.4658 (3)0.59494 (19)0.0531 (9)
C4A0.7357 (2)0.50677 (19)0.71157 (16)0.0263 (6)
C5A0.9122 (3)0.5469 (2)0.74546 (18)0.0399 (6)
C6A1.0155 (3)0.5444 (2)0.66214 (19)0.0409 (7)
O1W0.7300 (2)0.39624 (19)1.07848 (14)0.0422 (6)
O2W0.4510 (4)0.7847 (3)0.7040 (3)0.0475 (11)0.500
H10.746 (4)0.240 (3)1.049 (2)0.059 (8)*
H30.84830−0.023800.825900.0420*
H40.75000−0.188300.940900.0480*
H50.65440−0.134201.110600.0480*
H60.658400.083801.162600.0440*
H310.757000.114400.462600.0330*
H511.256200.242100.629000.0360*
H611.171100.278200.806200.0350*
H710.967900.319200.912600.0380*
H720.773800.278000.852400.0380*
H2A0.715100.437300.433200.0690*
H3A0.541800.439000.571400.0640*
H5A0.963000.575900.824500.0480*
H6A1.135400.571600.686200.0490*
H11W0.662 (4)0.407 (3)1.127 (3)0.069 (9)*
H12W0.719 (4)0.441 (3)1.031 (3)0.062 (9)*
H21W0.460 (5)0.730 (4)0.745 (4)0.060 (10)*0.500
H22W0.515 (5)0.860 (3)0.755 (3)0.065 (10)*0.500

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O210.0343 (8)0.0630 (11)0.0535 (10)0.0155 (8)0.0225 (7)0.0261 (8)
O220.0318 (8)0.0596 (10)0.0475 (9)0.0198 (8)0.0040 (7)0.0119 (8)
O410.0577 (11)0.0678 (12)0.0295 (8)0.0162 (9)0.0131 (8)0.0011 (8)
O420.0491 (10)0.1108 (16)0.0475 (10)0.0453 (11)0.0280 (8)0.0225 (10)
N10.0249 (8)0.0370 (10)0.0239 (8)0.0107 (7)0.0051 (6)0.0052 (7)
N210.0282 (9)0.0288 (9)0.0387 (9)0.0105 (7)0.0107 (7)0.0053 (7)
N410.0446 (10)0.0357 (9)0.0341 (9)0.0210 (8)0.0187 (8)0.0131 (8)
C20.0229 (9)0.0318 (10)0.0246 (9)0.0074 (8)0.0048 (7)0.0042 (8)
C30.0401 (11)0.0317 (11)0.0320 (10)0.0133 (9)0.0092 (9)0.0057 (8)
C40.0397 (12)0.0326 (11)0.0442 (12)0.0116 (10)−0.0008 (9)0.0097 (9)
C50.0294 (11)0.0508 (13)0.0386 (12)0.0104 (10)0.0044 (9)0.0236 (10)
C60.0273 (10)0.0550 (14)0.0270 (10)0.0136 (10)0.0067 (8)0.0152 (9)
C110.0304 (10)0.0207 (9)0.0275 (9)0.0096 (8)0.0115 (7)0.0068 (7)
C210.0253 (9)0.0213 (9)0.0334 (10)0.0094 (7)0.0102 (7)0.0075 (7)
C310.0301 (10)0.0254 (9)0.0275 (9)0.0106 (8)0.0058 (7)0.0054 (7)
C410.0331 (10)0.0259 (9)0.0287 (9)0.0140 (8)0.0134 (8)0.0090 (8)
C510.0265 (10)0.0333 (10)0.0366 (11)0.0141 (8)0.0132 (8)0.0116 (8)
C610.0286 (10)0.0302 (10)0.0286 (10)0.0115 (8)0.0051 (8)0.0072 (8)
C710.0381 (11)0.0269 (10)0.0294 (10)0.0106 (9)0.0131 (8)0.0034 (8)
S4A0.0314 (3)0.0369 (3)0.0266 (2)0.0204 (2)0.0159 (2)0.0132 (2)
O41A0.0427 (8)0.0521 (9)0.0272 (7)0.0214 (7)0.0150 (6)0.0081 (6)
O42A0.0408 (8)0.0418 (9)0.0492 (9)0.0168 (7)0.0242 (7)0.0205 (7)
O43A0.0532 (9)0.0702 (11)0.0371 (8)0.0471 (9)0.0254 (7)0.0254 (8)
C1A0.0332 (10)0.0285 (10)0.0298 (10)0.0170 (8)0.0174 (8)0.0136 (8)
C2A0.0474 (14)0.127 (2)0.0247 (11)0.0570 (16)0.0166 (10)0.0264 (13)
C3A0.0385 (12)0.113 (2)0.0303 (11)0.0483 (14)0.0158 (10)0.0256 (13)
C4A0.0325 (10)0.0283 (10)0.0295 (9)0.0187 (8)0.0174 (8)0.0129 (8)
C5A0.0303 (10)0.0487 (13)0.0278 (10)0.0045 (9)0.0116 (8)−0.0068 (9)
C6A0.0241 (10)0.0476 (13)0.0370 (11)0.0014 (9)0.0144 (8)−0.0061 (10)
O1W0.0555 (10)0.0677 (11)0.0272 (8)0.0456 (9)0.0177 (7)0.0154 (8)
O2W0.0471 (19)0.0426 (18)0.0560 (15)0.0206 (15)0.0161 (15)0.0066 (15)

Geometric parameters (Å, °)

S4A—O42A1.4479 (16)C21—C311.381 (3)
S4A—O43A1.4558 (19)C31—C411.382 (3)
S4A—C4A1.7687 (19)C41—C511.378 (3)
S4A—O41A1.4481 (15)C51—C611.381 (3)
O21—N211.214 (2)C3—H30.9300
O22—N211.224 (2)C4—H40.9300
O41—N411.213 (2)C5—H50.9300
O42—N411.210 (3)C6—H60.9300
O1W—H11W0.88 (4)C31—H310.9300
O1W—H12W0.80 (3)C51—H510.9300
O2W—H21W0.82 (4)C61—H610.9300
O2W—H22W0.87 (3)C71—H710.9700
N1—C61.342 (3)C71—H720.9700
N1—C21.348 (2)C1A—C2A1.381 (3)
N21—C211.471 (3)C1A—C6A1.378 (3)
N41—C411.479 (3)C1A—C1Ai1.491 (3)
N1—H10.95 (3)C2A—C3A1.387 (4)
C2—C31.375 (3)C3A—C4A1.371 (3)
C2—C711.506 (3)C4A—C5A1.367 (3)
C3—C41.392 (3)C5A—C6A1.387 (3)
C4—C51.378 (3)C2A—H2A0.9300
C5—C61.365 (3)C3A—H3A0.9300
C11—C611.394 (3)C5A—H5A0.9300
C11—C711.512 (3)C6A—H6A0.9300
C11—C211.396 (3)
O43A—S4A—C4A105.78 (9)C2—C3—H3120.00
O41A—S4A—C4A106.12 (9)C4—C3—H3120.00
O41A—S4A—O42A112.56 (9)C5—C4—H4120.00
O41A—S4A—O43A113.37 (10)C3—C4—H4120.00
O42A—S4A—O43A112.51 (10)C6—C5—H5121.00
O42A—S4A—C4A105.74 (9)C4—C5—H5121.00
H11W—O1W—H12W104 (3)N1—C6—H6120.00
H21W—O2W—H22W97 (4)C5—C6—H6120.00
C2—N1—C6123.13 (19)C41—C31—H31121.00
O21—N21—O22123.47 (19)C21—C31—H31121.00
O22—N21—C21118.33 (17)C61—C51—H51121.00
O21—N21—C21118.17 (17)C41—C51—H51121.00
O42—N41—C41118.02 (17)C11—C61—H61119.00
O41—N41—O42123.59 (19)C51—C61—H61119.00
O41—N41—C41118.38 (18)H71—C71—H72107.00
C6—N1—H1117.1 (16)C2—C71—H72108.00
C2—N1—H1119.8 (16)C11—C71—H71108.00
N1—C2—C3118.39 (18)C11—C71—H72108.00
N1—C2—C71114.88 (18)C2—C71—H71108.00
C3—C2—C71126.73 (18)C1Ai—C1A—C2A121.47 (17)
C2—C3—C4119.4 (2)C1Ai—C1A—C6A121.02 (18)
C3—C4—C5120.3 (2)C2A—C1A—C6A117.51 (19)
C4—C5—C6118.71 (19)C1A—C2A—C3A121.5 (2)
N1—C6—C5120.0 (2)C2A—C3A—C4A119.8 (2)
C61—C11—C71118.98 (18)S4A—C4A—C5A120.50 (15)
C21—C11—C71124.29 (18)C3A—C4A—C5A119.8 (2)
C21—C11—C61116.55 (17)S4A—C4A—C3A119.64 (17)
C11—C21—C31123.34 (17)C4A—C5A—C6A120.1 (2)
N21—C21—C11120.82 (16)C1A—C6A—C5A121.4 (2)
N21—C21—C31115.84 (16)C1A—C2A—H2A119.00
C21—C31—C41117.06 (17)C3A—C2A—H2A119.00
N41—C41—C51119.43 (17)C4A—C3A—H3A120.00
C31—C41—C51122.50 (17)C2A—C3A—H3A120.00
N41—C41—C31118.07 (17)C4A—C5A—H5A120.00
C41—C51—C61118.54 (17)C6A—C5A—H5A120.00
C11—C61—C51121.97 (18)C1A—C6A—H6A119.00
C2—C71—C11115.69 (17)C5A—C6A—H6A119.00
O43A—S4A—C4A—C5A137.52 (17)C61—C11—C21—C31−1.2 (3)
O42A—S4A—C4A—C3A73.2 (2)C71—C11—C21—N21−6.5 (3)
O41A—S4A—C4A—C3A−167.09 (19)C71—C11—C21—C31173.82 (18)
O41A—S4A—C4A—C5A16.81 (19)C21—C11—C61—C51−1.0 (3)
O42A—S4A—C4A—C5A−102.95 (18)C71—C11—C61—C51−176.22 (18)
O43A—S4A—C4A—C3A−46.4 (2)N21—C21—C31—C41−177.51 (17)
C6—N1—C2—C71−179.2 (2)C11—C21—C31—C412.2 (3)
C6—N1—C2—C30.2 (3)C21—C31—C41—N41179.06 (17)
C2—N1—C6—C5−0.7 (3)C21—C31—C41—C51−1.2 (3)
O21—N21—C21—C11−32.8 (3)C31—C41—C51—C61−0.8 (3)
O21—N21—C21—C31146.90 (19)N41—C41—C51—C61178.96 (18)
O22—N21—C21—C31−31.1 (3)C41—C51—C61—C111.9 (3)
O22—N21—C21—C11149.17 (19)C6A—C1A—C2A—C3A−1.1 (4)
O42—N41—C41—C31178.02 (19)C1Ai—C1A—C2A—C3A178.3 (2)
O42—N41—C41—C51−1.7 (3)C2A—C1A—C6A—C5A0.7 (3)
O41—N41—C41—C51176.96 (19)C1Ai—C1A—C6A—C5A−178.72 (19)
O41—N41—C41—C31−3.3 (3)C2A—C1A—C1Ai—C2Ai−180.0 (2)
N1—C2—C71—C11−173.63 (18)C2A—C1A—C1Ai—C6Ai0.7 (3)
N1—C2—C3—C40.4 (3)C6A—C1A—C1Ai—C2Ai−0.7 (3)
C71—C2—C3—C4179.8 (2)C6A—C1A—C1Ai—C6Ai180.0 (2)
C3—C2—C71—C117.0 (3)C1A—C2A—C3A—C4A0.6 (4)
C2—C3—C4—C5−0.6 (4)C2A—C3A—C4A—S4A−175.7 (2)
C3—C4—C5—C60.1 (4)C2A—C3A—C4A—C5A0.4 (4)
C4—C5—C6—N10.5 (4)S4A—C4A—C5A—C6A175.26 (16)
C21—C11—C71—C288.6 (2)C3A—C4A—C5A—C6A−0.8 (3)
C61—C11—C71—C2−96.6 (2)C4A—C5A—C6A—C1A0.3 (3)
C61—C11—C21—N21178.55 (17)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.95 (3)1.71 (3)2.655 (3)175 (3)
O1W—H11W···O43Aii0.88 (4)1.84 (4)2.716 (2)175 (3)
O1W—H12W···O41A0.80 (3)2.01 (3)2.806 (2)172 (3)
O2W—H21W···O43A0.82 (4)1.99 (4)2.761 (4)155 (4)
O2W—H22W···O21iii0.87 (3)2.32 (3)2.867 (2)124 (3)
C2A—H2A···O2Wiv0.932.463.195 (4)136
C4—H4···O41Av0.932.403.309 (3)165
C5—H5···O42Avi0.932.533.427 (3)163
C5A—H5A···O41A0.932.522.897 (3)105
C5A—H5A···O1Wvii0.932.583.232 (3)128
C6—H6···O2Wii0.932.443.316 (4)156
C6—H6···O21vi0.932.603.265 (3)129
C71—H72···O210.972.462.799 (3)100
C71—H72···O42A0.972.593.558 (3)176

Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) x, y+1, z; (iv) −x+1, −y+1, −z+1; (v) x, y−1, z; (vi) −x+1, −y, −z+2; (vii) −x+2, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2763).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Holman, K. T. & Ward, M. D. (2000). Angew Chem. Int. Ed.39, 1653–1655. [PubMed]
  • Liao, C.-Z., Feng, X.-L., Yao, J.-H. & Cai, J.-W. (2001). Acta Cryst. C57, 1215–1216. [PubMed]
  • Naumov, P., Sakurai, K., Ishikawa, T., Takahashi, J., Koshihawa, S. & Ohashi, Y. (2005). J. Phys. Chem. A, 109, 7264–7275. [PubMed]
  • Naumov, P., Sekine, A., Uekusa, H. & Ohashi, Y. (2002). J. Am. Chem. Soc.124, 8540–8541. [PubMed]
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Scherl, M., Haarer, D., Fischer, J., DeCian, A., Lehn, J.-M. & Eichen, Y. (1996). J. Phys. Chem.100, 16175–16186.
  • Seff, K. & Trueblood, K. N. (1968). Acta Cryst. B24, 1406–1415.
  • Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Swift, J. A., Reynolds, A. M. & Ward, M. D. (1998). Chem. Mater.10, 4159–4168.
  • Swift, J. A. & Ward, M. D. (1998). Chem. Mater.10, 1501–1504.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography