PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1021.
Published online 2010 April 2. doi:  10.1107/S1600536810011827
PMCID: PMC2979156

(4-Hydr­oxy-1,1-dioxo-2H-1,2-benzothia­zin-3-yl)(3-methoxy­phen­yl)methanone

Abstract

In the title compoud, C16H13NO5S, the heterocyclic thia­zine ring adopts a twist boat conformation with the S and N atoms displaced by 0.339 (5) and 0.322 (4) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. An intra­molecular O—H(...)O inter­action is present, forming a five-membered ring. The crystal structure is stabilized by inter­molecular N—H(...)O hydrogen bonds, which result in chains along the b axis.

Related literature

For the biological activity of 1,2-benzothia­zine derivatives, see: Ikeda et al. (1992 [triangle]); Ahmad et al. (2010 [triangle]); Lombardino et al. (1971 [triangle], 1973 [triangle]); Zia-ur-Rehman et al. (2006 [triangle]); Siddiqui et al. (2007 [triangle]). For comparison bond lengths, see: Allen et al. (1987 [triangle]). For related structures, see: Siddiqui et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1021-scheme1.jpg

Experimental

Crystal data

  • C16H13NO5S
  • M r = 331.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1021-efi1.jpg
  • a = 8.1866 (3) Å
  • b = 7.2431 (3) Å
  • c = 25.2452 (9) Å
  • β = 95.5869 (18)°
  • V = 1489.84 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 295 K
  • 0.16 × 0.12 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.962, T max = 0.976
  • 5610 measured reflections
  • 3399 independent reflections
  • 2795 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.147
  • S = 1.09
  • 3399 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011827/fl2296sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011827/fl2296Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

supplementary crystallographic information

Comment

Benzothiazine dioxide derivatives have been extensively explored in the past few decades since their very first derivatives were found to be potent anti-inflammatory and analgesic agents (Lombardino et al., 1971). Benzothiazines derivatives are now known to be anti-allergy (Ikeda et al., 1992), anti-inflammatory (Lombardino et al., 1973), bactericidal (Zia-ur-Rehman et al., 2006), etc. In continuation of our research on benzothiazine compounds (Ahmad et al., 2010, Siddiqui et al., 2007), we report the synthesis and crystal structure of the title compound (I) in this paper (Fig. 1).

Bond distances (Allen et al., 1987) and angles are as expected and agree with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a twist boat conformation with atoms S1 and N1 displaced by 0.339 (5) and 0.322 (4) Å , respectively, on the opposite sides from the mean plane formed by the remaining ring atoms.

The structure is stabilized by N—H···O type intermolecular hydrogen bonds which result in one dimensional chains of molecules extended along the b-axis; intramolecular interactions O3—H3O···O4 are also present resulting in five membered rings (Table 1 and Fig. 2).

Experimental

2-[2-(3-Methoxyphenyl)-2-oxoethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (5.0 g, 15.1 mmoles) was added to a solution of sodium metal (2.4 g) in dry methanol (50 ml). The mixture was subjected to reflux for half an hour. The contents of the flask were cooled to room temperature and then they were poured on ice cold HCl (50 ml, 5%). Light yellow precipitates of the title compound formed which were filtered off and washed with excess distilled water. Crystals suitable for XRD were grown in chloroform and methanol mixture (4:1). Yield = 3.7 g, 74%; m.p. = 425-427 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively; the H-atoms bonded to N and O were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atom). The final difference map was essentially featurless.

Figures

Fig. 1.
The title molecule with the displacement ellipsoids plotted at 30% probability level (Farrugia, 1997).
Fig. 2.
A unit cell showing molecular packing of the title compound; hydrogen bonds are represented by dashed lines. The H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C16H13NO5SF(000) = 688
Mr = 331.33Dx = 1.477 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3461 reflections
a = 8.1866 (3) Åθ = 1.0–27.5°
b = 7.2431 (3) ŵ = 0.24 mm1
c = 25.2452 (9) ÅT = 295 K
β = 95.5869 (18)°Block, yellow
V = 1489.84 (10) Å30.16 × 0.12 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer3399 independent reflections
Radiation source: fine-focus sealed tube2795 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 27.5°, θmin = 2.9°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −10→10
Tmin = 0.962, Tmax = 0.976k = −9→9
5610 measured reflectionsl = −32→32

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.147H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.051P)2 + 1.1474P] where P = (Fo2 + 2Fc2)/3
3399 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.30794 (7)0.18400 (11)0.10208 (2)0.0519 (2)
O10.1907 (2)0.3174 (4)0.08123 (8)0.0825 (8)
O20.2664 (3)−0.0070 (3)0.09981 (8)0.0780 (7)
O30.7829 (2)0.0710 (3)0.18344 (8)0.0532 (5)
H3O0.772 (4)0.058 (4)0.2194 (12)0.064*
O40.6461 (2)0.0579 (3)0.26917 (7)0.0502 (4)
O50.2363 (2)0.2043 (3)0.40084 (7)0.0639 (6)
N10.3602 (2)0.2363 (3)0.16357 (7)0.0405 (4)
H1N0.350 (3)0.347 (4)0.1721 (11)0.049*
C10.4921 (3)0.2116 (3)0.07263 (9)0.0443 (5)
C20.4907 (4)0.2573 (4)0.01952 (10)0.0608 (7)
H20.39190.2803−0.00080.073*
C30.6372 (4)0.2684 (5)−0.00311 (11)0.0669 (8)
H30.63740.2979−0.03900.080*
C40.7820 (4)0.2361 (5)0.02714 (12)0.0686 (8)
H40.88020.24420.01160.082*
C50.7853 (3)0.1919 (4)0.08025 (11)0.0561 (7)
H50.88500.17030.10020.067*
C60.6392 (3)0.1796 (3)0.10413 (9)0.0415 (5)
C70.6420 (3)0.1356 (3)0.16109 (9)0.0396 (5)
C80.5064 (3)0.1554 (3)0.18882 (8)0.0382 (5)
C90.5114 (3)0.0999 (3)0.24377 (9)0.0407 (5)
C100.3583 (3)0.0867 (3)0.27107 (9)0.0399 (5)
C110.3629 (3)0.1488 (3)0.32355 (9)0.0433 (5)
H110.45830.20050.34030.052*
C120.2229 (3)0.1324 (4)0.35052 (9)0.0485 (6)
C130.0846 (3)0.0446 (4)0.32655 (11)0.0550 (7)
H13−0.00780.03080.34490.066*
C140.0844 (3)−0.0224 (4)0.27528 (11)0.0529 (6)
H14−0.0076−0.08450.25980.063*
C150.2183 (3)0.0011 (3)0.24657 (10)0.0469 (5)
H150.2150−0.03950.21150.056*
C160.0876 (4)0.2197 (6)0.42631 (13)0.0785 (10)
H16A0.10890.28710.45900.094*
H16B0.04800.09850.43370.094*
H16C0.00630.28370.40320.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0374 (3)0.0828 (5)0.0356 (3)−0.0035 (3)0.0039 (2)−0.0057 (3)
O10.0477 (11)0.150 (2)0.0493 (11)0.0280 (13)0.0017 (8)0.0181 (13)
O20.0722 (14)0.0964 (17)0.0683 (13)−0.0391 (13)0.0216 (11)−0.0321 (12)
O30.0387 (9)0.0667 (12)0.0545 (10)0.0061 (8)0.0054 (8)0.0077 (9)
O40.0439 (9)0.0615 (11)0.0446 (9)0.0019 (8)0.0011 (7)0.0117 (8)
O50.0547 (11)0.0942 (16)0.0447 (10)0.0029 (10)0.0150 (8)−0.0049 (10)
N10.0389 (10)0.0488 (11)0.0340 (9)0.0058 (9)0.0049 (7)−0.0035 (8)
C10.0439 (12)0.0530 (14)0.0371 (11)−0.0021 (10)0.0091 (9)−0.0066 (10)
C20.0648 (17)0.080 (2)0.0387 (12)0.0017 (15)0.0090 (12)−0.0008 (13)
C30.082 (2)0.079 (2)0.0431 (13)0.0001 (17)0.0238 (14)0.0016 (14)
C40.0667 (18)0.085 (2)0.0598 (17)−0.0013 (16)0.0357 (15)0.0012 (16)
C50.0465 (14)0.0649 (17)0.0596 (15)−0.0009 (12)0.0182 (12)−0.0007 (13)
C60.0422 (12)0.0427 (12)0.0411 (11)−0.0013 (10)0.0112 (9)−0.0045 (9)
C70.0359 (11)0.0392 (11)0.0438 (11)0.0000 (9)0.0051 (9)−0.0015 (9)
C80.0367 (11)0.0422 (11)0.0357 (10)0.0031 (9)0.0032 (8)−0.0006 (9)
C90.0429 (12)0.0388 (11)0.0404 (11)0.0004 (9)0.0040 (9)0.0012 (9)
C100.0414 (12)0.0406 (11)0.0380 (11)0.0027 (9)0.0053 (9)0.0060 (9)
C110.0399 (12)0.0490 (13)0.0411 (11)0.0017 (10)0.0043 (9)0.0062 (10)
C120.0480 (13)0.0568 (15)0.0417 (12)0.0070 (11)0.0096 (10)0.0082 (11)
C130.0397 (13)0.0709 (18)0.0553 (15)0.0020 (12)0.0093 (11)0.0165 (13)
C140.0392 (12)0.0593 (16)0.0585 (15)−0.0052 (11)−0.0035 (11)0.0105 (12)
C150.0489 (13)0.0491 (13)0.0418 (12)−0.0015 (11)−0.0002 (10)0.0061 (10)
C160.069 (2)0.106 (3)0.0654 (19)0.0085 (19)0.0307 (16)−0.0085 (18)

Geometric parameters (Å, °)

S1—O21.425 (2)C5—C61.394 (3)
S1—O11.426 (2)C5—H50.9300
S1—N11.6145 (19)C6—C71.471 (3)
S1—C11.756 (2)C7—C81.377 (3)
O3—C71.319 (3)C8—C91.441 (3)
O3—H3O0.92 (3)C9—C101.491 (3)
O4—C91.257 (3)C10—C151.394 (3)
O5—C121.367 (3)C10—C111.396 (3)
O5—C161.436 (3)C11—C121.394 (3)
N1—C81.426 (3)C11—H110.9300
N1—H1N0.84 (3)C12—C131.385 (4)
C1—C21.380 (3)C13—C141.382 (4)
C1—C61.396 (3)C13—H130.9300
C2—C31.381 (4)C14—C151.382 (3)
C2—H20.9300C14—H140.9300
C3—C41.366 (4)C15—H150.9300
C3—H30.9300C16—H16A0.9600
C4—C51.376 (4)C16—H16B0.9600
C4—H40.9300C16—H16C0.9600
O2—S1—O1119.57 (16)C8—C7—C6122.5 (2)
O2—S1—N1107.85 (12)C7—C8—N1119.92 (19)
O1—S1—N1107.56 (13)C7—C8—C9120.8 (2)
O2—S1—C1107.77 (12)N1—C8—C9119.30 (19)
O1—S1—C1109.96 (13)O4—C9—C8120.0 (2)
N1—S1—C1102.85 (11)O4—C9—C10118.9 (2)
C7—O3—H3O107.2 (19)C8—C9—C10121.1 (2)
C12—O5—C16116.8 (2)C15—C10—C11120.6 (2)
C8—N1—S1117.75 (15)C15—C10—C9121.0 (2)
C8—N1—H1N112.5 (19)C11—C10—C9118.1 (2)
S1—N1—H1N116.6 (19)C12—C11—C10119.2 (2)
C2—C1—C6121.2 (2)C12—C11—H11120.4
C2—C1—S1120.8 (2)C10—C11—H11120.4
C6—C1—S1117.92 (17)O5—C12—C13124.7 (2)
C1—C2—C3119.4 (3)O5—C12—C11115.2 (2)
C1—C2—H2120.3C13—C12—C11120.1 (2)
C3—C2—H2120.3C14—C13—C12119.8 (2)
C4—C3—C2120.0 (3)C14—C13—H13120.1
C4—C3—H3120.0C12—C13—H13120.1
C2—C3—H3120.0C15—C14—C13121.3 (2)
C3—C4—C5121.2 (3)C15—C14—H14119.3
C3—C4—H4119.4C13—C14—H14119.3
C5—C4—H4119.4C14—C15—C10118.8 (2)
C4—C5—C6120.0 (3)C14—C15—H15120.6
C4—C5—H5120.0C10—C15—H15120.6
C6—C5—H5120.0O5—C16—H16A109.5
C5—C6—C1118.2 (2)O5—C16—H16B109.5
C5—C6—C7120.3 (2)H16A—C16—H16B109.5
C1—C6—C7121.6 (2)O5—C16—H16C109.5
O3—C7—C8122.3 (2)H16A—C16—H16C109.5
O3—C7—C6115.16 (19)H16B—C16—H16C109.5
O2—S1—N1—C866.4 (2)C6—C7—C8—N1−5.7 (3)
O1—S1—N1—C8−163.37 (18)O3—C7—C8—C9−2.0 (4)
C1—S1—N1—C8−47.3 (2)C6—C7—C8—C9176.1 (2)
O2—S1—C1—C294.1 (3)S1—N1—C8—C739.2 (3)
O1—S1—C1—C2−37.8 (3)S1—N1—C8—C9−142.49 (19)
N1—S1—C1—C2−152.2 (2)C7—C8—C9—O410.3 (4)
O2—S1—C1—C6−83.7 (2)N1—C8—C9—O4−167.9 (2)
O1—S1—C1—C6144.4 (2)C7—C8—C9—C10−168.2 (2)
N1—S1—C1—C630.0 (2)N1—C8—C9—C1013.6 (3)
C6—C1—C2—C31.1 (4)O4—C9—C10—C15−133.0 (2)
S1—C1—C2—C3−176.6 (2)C8—C9—C10—C1545.5 (3)
C1—C2—C3—C4−0.6 (5)O4—C9—C10—C1141.8 (3)
C2—C3—C4—C50.1 (5)C8—C9—C10—C11−139.7 (2)
C3—C4—C5—C6−0.1 (5)C15—C10—C11—C12−3.1 (4)
C4—C5—C6—C10.5 (4)C9—C10—C11—C12−177.9 (2)
C4—C5—C6—C7−178.9 (3)C16—O5—C12—C13−12.1 (4)
C2—C1—C6—C5−1.1 (4)C16—O5—C12—C11169.3 (3)
S1—C1—C6—C5176.7 (2)C10—C11—C12—O5−177.2 (2)
C2—C1—C6—C7178.4 (2)C10—C11—C12—C134.2 (4)
S1—C1—C6—C7−3.8 (3)O5—C12—C13—C14179.8 (2)
C5—C6—C7—O3−14.2 (3)C11—C12—C13—C14−1.7 (4)
C1—C6—C7—O3166.3 (2)C12—C13—C14—C15−1.9 (4)
C5—C6—C7—C8167.5 (2)C13—C14—C15—C103.0 (4)
C1—C6—C7—C8−11.9 (4)C11—C10—C15—C14−0.4 (4)
O3—C7—C8—N1176.2 (2)C9—C10—C15—C14174.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3O···O40.92 (3)1.70 (3)2.534 (2)148 (3)
N1—H1N···O4i0.84 (3)2.13 (3)2.886 (3)151 (3)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2296).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Ikeda, T., Kakegawa, H., Miyataka, H., Matsumoto, H. & Satoht, T. (1992). Bioorg. Med. Chem. Lett.2, 709–714.
  • Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem.16, 493–496. [PubMed]
  • Lombardino, J. G., Wiseman, E. H. & McLamore, W. M. (1971). J. Med. Chem.14, 1171–1177. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun.37, 767–773.
  • Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography