PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m561.
Published online 2010 April 24. doi:  10.1107/S1600536810012833
PMCID: PMC2979153

Tetra­aqua­bis(1,10-phenanthroline)bis­[μ2-1H-pyrazole-3,5-dicarboxyl­ato(3−)]tricopper(II) dihydrate

Abstract

The title compound, [Cu3(C5HN2O4)2(C12H8N2)2(H2O)4]·2H2O, is a trinuclear copper(II) complex in which two centrosymmetrically related pyrazole-3,5-dicarboxyl­ate(3−) and 1,10-phenanthroline ligands bind three CuII atoms, with one CuII atom located on a center of symmetry. In each complex, there are four coordinated water mol­ecules and two solvent water mol­ecules, which participate in extensive hydrogen-bond patterns. These inter­actions, as well as π–π inter­actions between neighbouring 1,10-phenanthroline ligands [shortest atom-to-atom distance = 3.363 (3) Å], extend the crystal structure into a three-dimensional supra­molecular network.

Related literature

For the potential applications of novel coordination architectures as new classes of materials, see: Kitagawa et al. (2004 [triangle]). The potential coordination sites of 3,5-pyrazoledicarboxylate are highly accessible to metal ions, see: Li (2005 [triangle]). However, divalent copper ions have rarely been coordinated with 3,5-pyrazoledicarboxylic acid at ambient temperature, see: King et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m561-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C5HN2O4)2(C12H8N2)2(H2O)4]·2H2O
  • M r = 965.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m561-efi1.jpg
  • a = 7.7326 (8) Å
  • b = 9.3332 (9) Å
  • c = 12.6848 (12) Å
  • α = 100.204 (2)°
  • β = 98.376 (2)°
  • γ = 103.641 (2)°
  • V = 858.59 (15) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.93 mm−1
  • T = 187 K
  • 0.07 × 0.07 × 0.03 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.872, T max = 0.937
  • 4550 measured reflections
  • 3151 independent reflections
  • 2361 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.071
  • wR(F 2) = 0.155
  • S = 1.10
  • 3151 reflections
  • 274 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012833/ez2198sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012833/ez2198Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Changchun, China.

supplementary crystallographic information

Comment

The design and synthesis of novel coordination architectures has attracted wide attention because of their intriguing network topologies and potential applications as new classes of materials (Kitagawa et al., 2004). 3,5-pyrazoledicarboxylate has several potential coordination sites: both nitrogen atoms of the pyrazole ring and the four carboxylate oxygen atoms, which are highly accessible to metal ions (Li, 2005). However, divalent copper ions have rarely been coordinated with 3,5-pyrazoledicarboxylic acid under ambient temperatures (King et al., 2003). In this study, we chose 3,5-pyrazoledicarboxylic acid and 1,10-phenanthroline as mixed ligands to obtain blue crystals of the title compound (I), which as shown in Fig. 1 is a copper(II) trimer.

The central copper atom, Cu(1), lies on a crystallographic inversion center, and has a six-coordinate octahedral geometry, in the which two oxygen atoms and two nitrogen atoms from two 3,5-pyrazoledicarboxylate ligands occupy the equatorial plane. The axial coordination sites are occupied by two water molecules. The Cu(1)—N/O bond distances span a very large range from 1.974 (5) to 2.595 (5) Å. The other two symmetry-related copper atoms, Cu(2), have pentacoordinate square-pyramidal geometry: a pyrazole nitrogen N(2) and a carboxylate oxygen O(3) from one 3,5-pyrazoledicarboxylato ligand occupy two coordination sites, two nitrogen atoms from one 1,10-phenanthroline chelate the Cu(2) atoms, while the remaining position is occupied by a water molecule. The Cu(2)—N/O bond distances range from 1.979 (6) to 2.171 (5) Å. The 3,5-pyrazoledicarboxylate ligand is nearly planar, with greatest deviation from the mean plane defined by the pyrazole ring by the carboxylate groups with values ranging from 0.0015 (1) to 0.0937 (1) Å. It can be seen that the ligand bite angles at the two different copper centers Cu(1) and Cu(2) are similar, 80.9 (3)° and 82.5 (4)°, respectively. This implies that the 3,5-pyrazoledicarboxylate ligand is a fairly rigid ligand and retains its integrity on metal chelation.

In the asymmetric unit, there is one lattice water molecule, O(7), and because each trimer contains four coordinated water molecules and carboxylate oxygen atoms, a complex network of hydrogen-bonding interactions is formed. Each 3,5-pyrazoledicarboxylato contains four hydrogen bond acceptors, while each coordinated water molecule acts as both a two hydrogen bond donor and a hydrogen bond acceptor, and the lattice water molecule is only a two hydrogen bond donor. In the crystal structure, π-π interactions also exist between neighbouring 1,10-phenanthroline ligands, with the nearest atom-to-atom distance between neighbouring 1,10-phenanthroline ligands being 3.363 (3) Å. The strong hydrogen bonding interactions as well as π-π interactions extend the crystal structure into a three-dimensional supramolecular network (Fig. 2).

Experimental

The title complex was prepared by the addition of Cu(BF4)2 (20 mmol), 1,10-phenanthroline (30 mmol) and 3,5-pyrazoledicarboxylic acid (30 mmol) to 40 ml water. The mixture was stirred for 1 h, a blue precipitate was obtained. A minimum amount of ammonia (14 M) was added to give a blue solution. Suitable crystals were obtained after standing at room temperature for several days (yield 42% based on Cu).

Refinement

H atoms were placed geometrically and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C,N)], using a riding model, with a C—H distance of 0.93 Å. The H atoms bonded to O atoms of water molecules were located in a difference Fourier map and refined with fixed individual displacement parameters Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
A view of (I), with the atom-labeling scheme and 30% probability displacement ellipsoids. [Symmetry code: (A) 1 - x, 1 - y, 1 - z.] For clarity the lattice water molecules have been omitted.
Fig. 2.
Perspective view of packing structure of (I) along the c axes, with hydrogen bonds indicated by dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonds have been omitted.

Crystal data

[Cu3(C5HN2O4)2(C12H8N2)2(H2O)4]·2H2OZ = 1
Mr = 965.28F(000) = 489
Triclinic, P1Dx = 1.867 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7326 (8) ÅCell parameters from 737 reflections
b = 9.3332 (9) Åθ = 2.3–22.4°
c = 12.6848 (12) ŵ = 1.93 mm1
α = 100.204 (2)°T = 187 K
β = 98.376 (2)°Block, blue
γ = 103.641 (2)°0.07 × 0.07 × 0.03 mm
V = 858.59 (15) Å3

Data collection

Bruker APEX CCD area-detector diffractometer3151 independent reflections
Radiation source: fine-focus sealed tube2361 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→9
Tmin = 0.872, Tmax = 0.937k = −11→9
4550 measured reflectionsl = −9→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.0597P)2 + 0.8906P] where P = (Fo2 + 2Fc2)/3
3151 reflections(Δ/σ)max = 0.027
274 parametersΔρmax = 0.87 e Å3
2 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.0217 (3)
Cu20.31791 (11)0.03642 (9)0.30349 (7)0.0197 (3)
N10.5830 (7)0.3127 (5)0.4748 (4)0.0162 (12)
N20.5312 (7)0.1718 (6)0.4112 (4)0.0185 (12)
N30.3647 (7)0.1167 (6)0.1569 (4)0.0200 (13)
N40.1358 (7)−0.1271 (6)0.1893 (5)0.0223 (13)
O10.7315 (6)0.5766 (5)0.6067 (4)0.0232 (11)
O20.9943 (6)0.5210 (5)0.6534 (4)0.0256 (12)
O30.4855 (6)−0.1054 (5)0.3024 (4)0.0190 (11)
O40.7632 (6)−0.1122 (5)0.3758 (4)0.0228 (11)
O50.3188 (6)0.4290 (5)0.6487 (4)0.0301 (12)
H5A0.21050.43770.62720.036*
H5B0.27360.32800.63050.036*
O60.1384 (8)0.1048 (7)0.3818 (5)0.0413 (15)
H6A0.025 (5)0.049 (8)0.365 (7)0.050*
H6B0.175 (11)0.116 (10)0.453 (2)0.050*
O70.3725 (8)0.5886 (6)0.1884 (5)0.0453 (16)
H7A0.44020.54250.22010.054*
H7B0.41420.67890.22990.054*
C10.8372 (9)0.4887 (7)0.6033 (5)0.0168 (14)
C20.7527 (9)0.3356 (7)0.5299 (5)0.0165 (14)
C30.8129 (8)0.2092 (7)0.5029 (5)0.0159 (14)
H30.92720.19420.52960.019*
C40.6679 (8)0.1085 (7)0.4275 (5)0.0147 (14)
C50.6392 (9)−0.0491 (7)0.3650 (5)0.0144 (14)
C60.4736 (10)0.2407 (8)0.1428 (7)0.0294 (18)
H60.54170.31540.20540.035*
C70.4934 (11)0.2670 (8)0.0375 (7)0.0342 (19)
H70.57290.35760.02990.041*
C80.3963 (10)0.1598 (9)−0.0520 (6)0.0305 (18)
H80.40870.1752−0.12280.037*
C90.2791 (10)0.0281 (8)−0.0407 (6)0.0253 (17)
C100.1717 (10)−0.0923 (9)−0.1297 (6)0.0296 (18)
H100.1831−0.0840−0.20210.036*
C110.0548 (10)−0.2173 (8)−0.1152 (6)0.0277 (18)
H11−0.0148−0.2939−0.17630.033*
C120.0373 (9)−0.2327 (8)−0.0056 (6)0.0223 (16)
C13−0.0827 (10)−0.3571 (8)0.0162 (7)0.0303 (19)
H13−0.1585−0.4353−0.04200.036*
C14−0.0892 (10)−0.3643 (8)0.1231 (6)0.0309 (18)
H14−0.1693−0.44810.13930.037*
C150.0211 (9)−0.2496 (8)0.2065 (6)0.0247 (16)
H150.0158−0.25730.27970.030*
C160.1457 (9)−0.1181 (8)0.0838 (6)0.0221 (16)
C170.2664 (9)0.0116 (8)0.0656 (6)0.0217 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0237 (7)0.0135 (6)0.0264 (8)0.0099 (5)−0.0023 (5)−0.0002 (5)
Cu20.0173 (5)0.0231 (5)0.0140 (5)0.0037 (3)0.0001 (3)−0.0038 (4)
N10.019 (3)0.007 (3)0.016 (3)−0.002 (2)−0.003 (2)−0.002 (2)
N20.019 (3)0.020 (3)0.018 (3)0.008 (2)0.002 (2)0.005 (2)
N30.025 (3)0.020 (3)0.018 (3)0.012 (2)0.004 (2)0.004 (2)
N40.019 (3)0.025 (3)0.019 (3)0.006 (2)0.002 (2)−0.003 (3)
O10.024 (3)0.016 (2)0.028 (3)0.010 (2)−0.001 (2)0.000 (2)
O20.023 (3)0.021 (3)0.029 (3)0.009 (2)−0.003 (2)−0.001 (2)
O30.019 (2)0.013 (2)0.022 (3)0.0055 (19)−0.002 (2)0.000 (2)
O40.023 (3)0.021 (2)0.023 (3)0.009 (2)0.003 (2)0.000 (2)
O50.025 (3)0.022 (3)0.042 (3)0.006 (2)0.004 (2)0.006 (2)
O60.032 (3)0.047 (4)0.040 (4)0.006 (3)0.004 (3)0.006 (3)
O70.056 (4)0.027 (3)0.040 (4)0.011 (3)−0.016 (3)−0.004 (3)
C10.020 (4)0.018 (3)0.009 (3)0.004 (3)−0.002 (3)0.003 (3)
C20.025 (4)0.010 (3)0.012 (4)0.002 (3)0.003 (3)0.001 (3)
C30.015 (3)0.017 (3)0.018 (4)0.007 (3)0.001 (3)0.006 (3)
C40.021 (3)0.015 (3)0.013 (4)0.009 (3)0.010 (3)0.005 (3)
C50.021 (4)0.012 (3)0.011 (3)0.004 (3)0.004 (3)0.003 (3)
C60.031 (4)0.023 (4)0.032 (5)0.009 (3)0.003 (3)0.001 (3)
C70.039 (5)0.023 (4)0.044 (5)0.008 (3)0.011 (4)0.013 (4)
C80.028 (4)0.046 (5)0.026 (4)0.018 (4)0.013 (3)0.015 (4)
C90.027 (4)0.034 (4)0.017 (4)0.018 (3)0.005 (3)0.001 (3)
C100.034 (4)0.049 (5)0.012 (4)0.024 (4)0.005 (3)0.004 (3)
C110.031 (4)0.025 (4)0.021 (4)0.011 (3)−0.004 (3)−0.007 (3)
C120.025 (4)0.026 (4)0.015 (4)0.016 (3)−0.002 (3)−0.005 (3)
C130.029 (4)0.016 (4)0.038 (5)0.004 (3)−0.002 (3)−0.007 (3)
C140.027 (4)0.028 (4)0.029 (5)−0.003 (3)0.000 (3)0.003 (3)
C150.023 (4)0.023 (4)0.027 (4)0.006 (3)0.005 (3)0.003 (3)
C160.018 (4)0.027 (4)0.021 (4)0.009 (3)0.003 (3)−0.002 (3)
C170.024 (4)0.025 (4)0.020 (4)0.015 (3)0.006 (3)0.003 (3)

Geometric parameters (Å, °)

Cu1—O11.974 (5)C1—C21.499 (8)
Cu1—O1i1.974 (5)C2—C31.374 (8)
Cu1—N1i1.990 (5)C3—C41.388 (8)
Cu1—N11.990 (5)C3—H30.9500
Cu2—N21.983 (5)C4—C51.491 (8)
Cu2—O61.979 (6)C6—C71.423 (10)
Cu2—N42.005 (5)C6—H60.9500
Cu2—O32.059 (4)C7—C81.359 (10)
Cu2—N32.171 (6)C7—H70.9500
N1—C21.343 (8)C8—C91.388 (10)
N1—N21.350 (7)C8—H80.9500
N2—C41.335 (8)C9—C171.399 (9)
N3—C61.318 (9)C9—C101.436 (10)
N3—C171.368 (8)C10—C111.357 (10)
N4—C151.344 (9)C10—H100.9500
N4—C161.368 (8)C11—C121.445 (10)
O1—C11.287 (8)C11—H110.9500
O2—C11.227 (7)C12—C131.402 (10)
O3—C51.266 (7)C12—C161.415 (9)
O4—C51.242 (7)C13—C141.377 (10)
O5—H5A0.8692C13—H130.9500
O5—H5B0.8987C14—C151.378 (10)
O6—H6A0.88 (2)C14—H140.9500
O6—H6B0.88 (2)C15—H150.9500
O7—H7A0.8526C16—C171.421 (10)
O7—H7B0.8695
O1—Cu1—O1i180.000 (1)C4—C3—H3128.1
O1—Cu1—N1i97.50 (19)N2—C4—C3110.0 (5)
O1i—Cu1—N1i82.50 (19)N2—C4—C5117.1 (6)
O1—Cu1—N182.50 (19)C3—C4—C5132.9 (6)
O1i—Cu1—N197.50 (19)O4—C5—O3125.9 (6)
N1i—Cu1—N1180.000 (1)O4—C5—C4119.6 (6)
N2—Cu2—O694.4 (2)O3—C5—C4114.5 (5)
N2—Cu2—N4168.4 (2)N3—C6—C7122.6 (7)
O6—Cu2—N495.8 (2)N3—C6—H6118.7
N2—Cu2—O380.9 (2)C7—C6—H6118.7
O6—Cu2—O3142.7 (2)C8—C7—C6118.6 (7)
N4—Cu2—O387.6 (2)C8—C7—H7120.7
N2—Cu2—N3100.5 (2)C6—C7—H7120.7
O6—Cu2—N3118.2 (2)C7—C8—C9120.6 (7)
N4—Cu2—N379.4 (2)C7—C8—H8119.7
O3—Cu2—N398.95 (19)C9—C8—H8119.7
C2—N1—N2107.8 (5)C8—C9—C17117.2 (7)
C2—N1—Cu1111.5 (4)C8—C9—C10125.0 (7)
N2—N1—Cu1140.3 (4)C17—C9—C10117.9 (7)
C4—N2—N1108.1 (5)C11—C10—C9123.0 (7)
C4—N2—Cu2112.9 (4)C11—C10—H10118.5
N1—N2—Cu2139.0 (4)C9—C10—H10118.5
C6—N3—C17117.7 (6)C10—C11—C12119.3 (6)
C6—N3—Cu2131.6 (5)C10—C11—H11120.4
C17—N3—Cu2110.7 (4)C12—C11—H11120.4
C15—N4—C16118.2 (6)C13—C12—C16118.4 (7)
C15—N4—Cu2126.5 (5)C13—C12—C11122.7 (6)
C16—N4—Cu2115.0 (4)C16—C12—C11118.9 (6)
C1—O1—Cu1115.1 (4)C14—C13—C12119.1 (7)
C5—O3—Cu2114.6 (4)C14—C13—H13120.5
H5A—O5—H5B88.9C12—C13—H13120.5
Cu2—O6—H6A119 (5)C15—C14—C13119.7 (7)
Cu2—O6—H6B109 (6)C15—C14—H14120.1
H6A—O6—H6B107 (8)C13—C14—H14120.1
H7A—O7—H7B100.3N4—C15—C14123.2 (7)
O2—C1—O1125.7 (6)N4—C15—H15118.4
O2—C1—C2120.2 (6)C14—C15—H15118.4
O1—C1—C2114.1 (5)N4—C16—C12121.5 (6)
N1—C2—C3110.3 (5)N4—C16—C17118.2 (6)
N1—C2—C1115.9 (5)C12—C16—C17120.3 (7)
C3—C2—C1133.8 (6)N3—C17—C9123.3 (6)
C2—C3—C4103.9 (5)N3—C17—C16116.1 (6)
C2—C3—H3128.1C9—C17—C16120.5 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O2ii0.872.052.842 (7)152
O5—H5B···O4iii0.901.952.824 (7)163
O6—H6A···O4ii0.88 (5)2.26 (6)3.104 (8)161 (7)
O6—H6B···O4iii0.89 (3)2.16 (3)3.042 (8)172 (10)
O7—H7A···O5i0.852.242.977 (8)145
O7—H7B···O3iv0.871.972.829 (7)170

Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y, −z+1; (i) −x+1, −y+1, −z+1; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2198).

References

  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsion, USA.
  • King, P., Clerac, R., Anson, C. E., Coulon, C. & Powell, A. K. (2003). Inorg. Chem.42, 3492–3500. [PubMed]
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Li, X.-H. (2005). Acta Cryst. E61, m2405–m2407.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography