PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m579–m580.
Published online 2010 April 28. doi:  10.1107/S1600536810014765
PMCID: PMC2979152

(2-{[2-Carboxyl­ato-1-(4-chloro­phen­yl)eth­yl]imino­meth­yl}phenolato-κ3 O,N,O′)(1H-imidazole-κN 3)copper(II) monohydrate

Abstract

The CuII atom of the title complex, [Cu(C16H12ClNO3)(C3H4N2)]·H2O, has a distorted square-planar coordination geometry formed by a tridentate Schiff base dianion and an imidazole ligand. The imidazole is nearly coplanar with the coordination plane, the dihedral angle between the planes being 3.73 (12)°. In the Schiff base ligand, the two benzene rings are oriented at a dihedral angle of 75.87 (12)°. O—H(...)O and N—H(...)O hydrogen bonding is present in the crystal structure. One H atom of the uncoordinated water mol­ecule is disordered equally over two sites.

Related literature

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino­acid Schiff bases are non-enzymatic models for pyridoxal amino acid systems, which are of importance as key inter­mediates in many metabolic reactions of amino acid catalyses by enzymes, see: Bkouche-Waksman et al. (1988 [triangle]); Wetmore et al. (2001 [triangle]); Zabinski & Toney (2001 [triangle]). For the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids, see: Ganguly et al. (2008 [triangle]) and references cited therein. For Schiff bases derived from β-amino acids, see: Vančo et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m579-scheme1.jpg

Experimental

Crystal data

  • [Cu(C16H12ClNO3)(C3H4N2)]·H2O
  • M r = 451.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m579-efi1.jpg
  • a = 23.884 (1) Å
  • b = 4.944 (1) Å
  • c = 32.008 (1) Å
  • β = 96.88 (1)°
  • V = 3752.4 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 296 K
  • 0.20 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.776, T max = 0.825
  • 18085 measured reflections
  • 4310 independent reflections
  • 3298 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.087
  • S = 1.04
  • 4310 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014765/xu2751sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014765/xu2751Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Zhejiang Province, China (No. Y4080342) and the Science Foundation of Zhejiang Sci-Tech University (No. 0813622-Y) for financial support.

supplementary crystallographic information

Comment

Transition metal complexes of salicylaldehyde-peptides and salicylaldehyde-amino acid Schiff base are non-enzymatic models for pyridoxal-amino acid systems, which are of considerable importance as key intermediates in many metabolic reactions of amino acids catalyzed by enzymes (Zabinski et al., 2001; Wetmore et al., 2001; Bkouche-Waksman et al.,1988). Considerable effort has been devoted to the preparation, structural characterization, appropriate spectroscopy and magnetic studies of Schiff-base complexes derived from salicylaldehyde and amino acids and reduced salicylidene amino acid (Ganguly et al., 2008), but little attention has been given to Schiff base derived from β-amino acid (Vančo et al., 2008). Herein, we report the structure study of [Cu(L)(C3H4N2)]. H2O (H2L= Schiff bases derived from glycylglycine and salicylaldehyde, C16H14NO3Cl).

The complex crystallizes in the monoclinic space group C2/c. The title molecule,is characterized by a square-planar CuII coordination with the deprotonated tridentate Schiff base dianion and one imidazole molecule in the basal plane (Fig. 1). The Cu1—N1 bond distance is 1.958 Å. The two Cu—O bonds are 1.889(Cu1—O1) and 1.950 Å (Cu1—O3). The fourth position occupied by one N atom from the imidazole ligand, with bond length of 1.980 Å (Cu1—N2). The phenyl ring [C1—C6] and the ring of C1, C6, C7, N1, O1, Cu1 chelate ring are almost coplanar with a small dihedral angle of 1.8o. Hydrogen bond between the coordinated imidazole molecule and the carboxyl oxygen atom of an adjacent, symmetry related CuL unit leads to the formation of a [CuL(C3H4N2)]2 dimer. Hydrogen bond between water molecule and CuL unit further link the dimers into two-dimension layers (Fig. 2).

Experimental

The Schiff base was prepared through the condensation of 3-amino-3-(4-chlorophenyl) propionic acid and salicylaldehyde. 3-Amino-3-(4-chlorophenyl) propionic acid (10 mmol) was dissolved and refluxed in absolute methanol (40 ml) containing LiOH.H2O (10 mmol). After cooled to room temperature, a solution of salicylaldehyde (10 mmol) in absolute methanol was added slowly with stirring over 10 min. Then Cu(NO3)2 (10 mmol) was added to the HLLi solution and the resulting solution was adjusted to the pH = 9-11 by 1.0 mol/L NaOH solution. After stirring at room temperature for 30 min, imidazole (10 mmol) was added to the solution with stirring. The resulting clear solution was then filtered. The filtrate was allowed to evaporate slowly at room temperature. After several days dark green crystals suitable for X-ray diffraction were obtained.

Refinement

One H atom of the lattice water molecule is equally disordered over two sites. The water H atoms were placed in chemical sensitive positions and refined with distance restraint of O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and constrained as riding atoms with C—H = 0.93–0.98 Å and N—H = 0.86 Å, Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The structure of the title complex with atom numbering scheme; thermal ellipsoids are drawn at 40% probability level.
Fig. 2.
Schematic representation of the hydrogen-bonded (dashed lines).

Crystal data

[Cu(C16H12ClNO3)(C3H4N2)]·H2OF(000) = 1848
Mr = 451.35Dx = 1.598 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3298 reflections
a = 23.884 (1) Åθ = 1.7–27.5°
b = 4.944 (1) ŵ = 1.34 mm1
c = 32.008 (1) ÅT = 296 K
β = 96.88 (1)°Block, dark green
V = 3752.4 (8) Å30.20 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer4310 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −30→30
Tmin = 0.776, Tmax = 0.825k = −6→6
18085 measured reflectionsl = −41→41

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0381P)2 + 2.3614P] where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.257392 (11)0.70003 (6)0.103939 (8)0.03102 (10)
Cl1−0.00394 (3)1.30201 (17)0.18252 (3)0.0645 (2)
N10.20142 (7)0.4707 (4)0.12667 (6)0.0301 (4)
N20.31243 (7)0.9444 (4)0.08174 (6)0.0332 (4)
N30.34883 (9)1.2624 (4)0.04560 (7)0.0414 (5)
H3A0.35131.39150.02790.050*
O10.31821 (6)0.5542 (4)0.14014 (5)0.0406 (4)
O20.13208 (7)0.8259 (4)0.00906 (5)0.0425 (4)
O30.20152 (7)0.8490 (4)0.06065 (5)0.0436 (4)
C10.31811 (10)0.3666 (5)0.16842 (7)0.0351 (5)
C20.36998 (10)0.2833 (6)0.19110 (8)0.0439 (6)
H20.40330.36710.18580.053*
C30.37183 (11)0.0827 (6)0.22041 (7)0.0447 (6)
H30.40650.03160.23460.054*
C40.32307 (11)−0.0477 (6)0.22958 (8)0.0462 (7)
H40.3250−0.18380.24980.055*
C50.27261 (10)0.0272 (5)0.20854 (7)0.0409 (6)
H50.2400−0.05940.21460.049*
C60.26851 (10)0.2331 (5)0.17774 (7)0.0329 (5)
C70.21439 (10)0.2914 (5)0.15579 (7)0.0335 (5)
H70.18460.18790.16330.040*
C80.14124 (9)0.4717 (5)0.10794 (7)0.0308 (5)
H80.12510.29930.11570.037*
C90.10709 (9)0.6933 (5)0.12577 (7)0.0313 (5)
C100.11509 (10)0.7554 (5)0.16848 (8)0.0383 (6)
H100.14400.67010.18570.046*
C110.08136 (10)0.9405 (6)0.18610 (8)0.0433 (6)
H110.08750.97880.21470.052*
C120.03856 (10)1.0673 (5)0.16069 (8)0.0426 (6)
C130.02920 (10)1.0118 (5)0.11820 (8)0.0431 (6)
H130.00031.09870.10130.052*
C140.06307 (9)0.8260 (5)0.10105 (8)0.0387 (6)
H140.05650.78810.07240.046*
C150.13857 (9)0.4720 (5)0.05973 (7)0.0331 (5)
H15A0.16170.32500.05130.040*
H15B0.10000.43730.04770.040*
C160.15803 (9)0.7320 (5)0.04156 (7)0.0325 (5)
C170.30207 (10)1.1329 (5)0.05273 (7)0.0385 (6)
H170.26641.17070.03890.046*
C180.39202 (11)1.1523 (6)0.07154 (8)0.0487 (7)
H180.42981.20160.07350.058*
C190.36968 (9)0.9583 (6)0.09385 (8)0.0408 (6)
H190.38970.85040.11420.049*
O1W0.48323 (8)0.7498 (5)0.01584 (7)0.0703 (6)
H1W0.44690.73370.01590.084*
H2W10.49590.88830.00660.084*0.50
H2W20.49870.62090.00500.084*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02878 (15)0.03081 (17)0.03347 (16)−0.00405 (12)0.00374 (11)0.00462 (13)
Cl10.0498 (4)0.0640 (5)0.0836 (6)0.0023 (4)0.0240 (4)−0.0184 (4)
N10.0281 (9)0.0298 (11)0.0323 (10)−0.0028 (8)0.0034 (8)0.0038 (9)
N20.0315 (10)0.0363 (12)0.0314 (10)−0.0053 (9)0.0027 (8)0.0040 (9)
N30.0459 (12)0.0394 (13)0.0399 (11)−0.0119 (10)0.0094 (9)0.0071 (10)
O10.0320 (8)0.0453 (11)0.0439 (10)−0.0041 (8)0.0017 (7)0.0127 (9)
O20.0417 (9)0.0455 (11)0.0387 (9)−0.0073 (8)−0.0022 (8)0.0123 (8)
O30.0362 (9)0.0392 (11)0.0525 (10)−0.0121 (8)−0.0064 (8)0.0160 (9)
C10.0399 (13)0.0362 (14)0.0290 (12)0.0020 (11)0.0040 (10)−0.0005 (11)
C20.0349 (13)0.0546 (18)0.0418 (14)0.0031 (12)0.0025 (11)0.0028 (13)
C30.0447 (14)0.0524 (17)0.0354 (13)0.0139 (13)−0.0020 (11)0.0034 (13)
C40.0584 (16)0.0458 (17)0.0340 (13)0.0074 (14)0.0034 (12)0.0102 (12)
C50.0450 (14)0.0396 (15)0.0381 (13)−0.0007 (12)0.0050 (11)0.0069 (12)
C60.0354 (12)0.0322 (13)0.0310 (12)0.0030 (10)0.0044 (9)0.0014 (10)
C70.0341 (12)0.0310 (13)0.0364 (12)−0.0047 (11)0.0081 (10)0.0022 (11)
C80.0276 (11)0.0297 (12)0.0349 (12)−0.0080 (10)0.0026 (9)0.0058 (10)
C90.0271 (11)0.0332 (13)0.0340 (12)−0.0093 (10)0.0043 (9)0.0028 (11)
C100.0343 (12)0.0436 (16)0.0366 (13)−0.0048 (11)0.0023 (10)0.0048 (11)
C110.0448 (14)0.0499 (17)0.0359 (13)−0.0082 (13)0.0076 (11)−0.0029 (13)
C120.0344 (12)0.0404 (15)0.0552 (16)−0.0069 (12)0.0152 (11)−0.0048 (13)
C130.0293 (12)0.0477 (16)0.0508 (15)−0.0029 (12)−0.0009 (11)0.0003 (13)
C140.0329 (12)0.0457 (16)0.0367 (13)−0.0029 (12)0.0003 (10)−0.0016 (12)
C150.0348 (12)0.0282 (13)0.0355 (12)−0.0060 (10)0.0009 (10)−0.0003 (11)
C160.0325 (11)0.0325 (13)0.0332 (12)−0.0026 (10)0.0073 (10)0.0018 (10)
C170.0354 (12)0.0422 (15)0.0381 (13)−0.0083 (11)0.0046 (10)0.0050 (12)
C180.0370 (13)0.0574 (19)0.0522 (16)−0.0136 (13)0.0069 (12)0.0030 (14)
C190.0319 (12)0.0470 (16)0.0425 (14)−0.0066 (11)0.0004 (10)0.0069 (12)
O1W0.0450 (11)0.0803 (16)0.0830 (15)−0.0032 (11)−0.0032 (11)0.0025 (12)

Geometric parameters (Å, °)

Cu1—O11.8894 (16)C6—C71.425 (3)
Cu1—O31.9494 (16)C7—H70.9300
Cu1—N11.9582 (18)C8—C91.518 (3)
Cu1—N21.9789 (18)C8—C151.537 (3)
Cl1—C121.742 (3)C8—H80.9800
N1—C71.297 (3)C9—C101.392 (3)
N1—C81.489 (3)C9—C141.401 (3)
N2—C171.318 (3)C10—C111.383 (3)
N2—C191.378 (3)C10—H100.9300
N3—C171.331 (3)C11—C121.379 (3)
N3—C181.358 (3)C11—H110.9300
N3—H3A0.8600C12—C131.379 (3)
O1—C11.296 (3)C13—C141.381 (3)
O2—C161.236 (3)C13—H130.9300
O3—C161.278 (3)C14—H140.9300
C1—C61.419 (3)C15—C161.507 (3)
C1—C21.420 (3)C15—H15A0.9700
C2—C31.362 (4)C15—H15B0.9700
C2—H20.9300C17—H170.9300
C3—C41.393 (4)C18—C191.344 (3)
C3—H30.9300C18—H180.9300
C4—C51.360 (3)C19—H190.9300
C4—H40.9300O1W—H1W0.8709
C5—C61.412 (3)O1W—H2W10.8180
C5—H50.9300O1W—H2W20.8325
O1—Cu1—O3172.18 (7)C9—C8—H8106.6
O1—Cu1—N193.45 (7)C15—C8—H8106.6
O3—Cu1—N192.47 (7)C10—C9—C14117.2 (2)
O1—Cu1—N287.61 (7)C10—C9—C8120.8 (2)
O3—Cu1—N286.66 (7)C14—C9—C8121.8 (2)
N1—Cu1—N2177.75 (8)C11—C10—C9121.9 (2)
C7—N1—C8115.30 (18)C11—C10—H10119.1
C7—N1—Cu1123.22 (15)C9—C10—H10119.1
C8—N1—Cu1121.16 (14)C12—C11—C10119.2 (2)
C17—N2—C19105.0 (2)C12—C11—H11120.4
C17—N2—Cu1127.44 (16)C10—C11—H11120.4
C19—N2—Cu1127.53 (16)C11—C12—C13120.8 (2)
C17—N3—C18107.1 (2)C11—C12—Cl1119.5 (2)
C17—N3—H3A126.5C13—C12—Cl1119.6 (2)
C18—N3—H3A126.5C12—C13—C14119.4 (2)
C1—O1—Cu1129.47 (15)C12—C13—H13120.3
C16—O3—Cu1128.07 (16)C14—C13—H13120.3
O1—C1—C6123.5 (2)C13—C14—C9121.5 (2)
O1—C1—C2119.3 (2)C13—C14—H14119.2
C6—C1—C2117.2 (2)C9—C14—H14119.2
C3—C2—C1121.2 (2)C16—C15—C8114.26 (19)
C3—C2—H2119.4C16—C15—H15A108.7
C1—C2—H2119.4C8—C15—H15A108.7
C2—C3—C4121.5 (2)C16—C15—H15B108.7
C2—C3—H3119.2C8—C15—H15B108.7
C4—C3—H3119.2H15A—C15—H15B107.6
C5—C4—C3118.9 (2)O2—C16—O3122.0 (2)
C5—C4—H4120.5O2—C16—C15119.9 (2)
C3—C4—H4120.5O3—C16—C15118.1 (2)
C4—C5—C6121.7 (2)N2—C17—N3111.7 (2)
C4—C5—H5119.2N2—C17—H17124.1
C6—C5—H5119.2N3—C17—H17124.1
C5—C6—C1119.5 (2)C19—C18—N3106.9 (2)
C5—C6—C7118.2 (2)C19—C18—H18126.6
C1—C6—C7122.2 (2)N3—C18—H18126.6
N1—C7—C6128.1 (2)C18—C19—N2109.3 (2)
N1—C7—H7115.9C18—C19—H19125.4
C6—C7—H7115.9N2—C19—H19125.4
N1—C8—C9112.78 (18)H1W—O1W—H2W1119.3
N1—C8—C15109.03 (17)H1W—O1W—H2W2115.1
C9—C8—C15114.66 (19)H2W1—O1W—H2W2106.8
N1—C8—H8106.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2i0.871.982.799 (3)156
O1W—H2W1···O1Wii0.822.012.826 (4)172
O1W—H2W2···O1Wiii0.832.022.822 (5)163
N3—H3A···O2iv0.861.902.758 (3)172

Symmetry codes: (i) −x+1/2, −y+3/2, −z; (ii) −x+1, −y+2, −z; (iii) −x+1, −y+1, −z; (iv) −x+1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2751).

References

  • Bkouche-Waksman, I., Barbe, J. M. & Kvick, Å. (1988). Acta Cryst. B44, 595–601. [PubMed]
  • Bruker (2003). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ganguly, R., Sreenivasulu, B. & Vittal, J. J. (2008). Coord. Chem. Rev. 252, 1027–1050.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vančo, J., Marek, J., Trávníček, Z., Račanská, E., Muselík, J. & Švajlenová, O. (2008). J. Inorg. Biochem.102, 595–605. [PubMed]
  • Wetmore, S. D., Smith, D. M. & Radom, L. (2001). J. Am. Chem. Soc.123, 8678–8689. [PubMed]
  • Zabinski, R. F. & Toney, M. D. (2001). J. Am. Chem. Soc.123, 193–198. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography