PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1049.
Published online 2010 April 10. doi:  10.1107/S1600536810012730
PMCID: PMC2979145

1-[(2-Chloro-8-methyl­quinolin-3-yl)­meth­yl]pyridin-2(1H)-one

Abstract

In the title compound, C16H13ClN2O, the quinoline ring system is approximately planar [maximum deviation 0.021 (2) Å] and forms a dihedral angle of 85.93 (6)° with the pyridone ring. Inter­molecular C—H(...)O hydrogen bonding, together with weak C—H(...)π and π–π inter­actions [centroid-to-centroid distances 3.5533 (9) and 3.7793 (9) Å], characterize the crystal structure.

Related literature

For 2-pyridone analogues, see: Arman et al. (2009 [triangle]); Clegg & Nichol (2004 [triangle]); Nichol & Clegg (2005 [triangle]). For the synthesis of 2-pyridone derivatives, see: Banerjee & Sereda (2009 [triangle]); Roopan & Khan (2009 [triangle]); Roopan et al. (2010 [triangle]); Dandepally & Williams (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1049-scheme1.jpg

Experimental

Crystal data

  • C16H13ClN2O
  • M r = 284.73
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1049-efi1.jpg
  • a = 10.1513 (2) Å
  • b = 9.3917 (2) Å
  • c = 14.1430 (2) Å
  • β = 90.948 (2)°
  • V = 1348.17 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 295 K
  • 0.26 × 0.24 × 0.20 mm

Data collection

  • Oxford Xcalibur Eos (Nova) CCD detector diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.931, T max = 0.946
  • 17649 measured reflections
  • 2511 independent reflections
  • 2088 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.100
  • S = 1.10
  • 2511 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012730/im2191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012730/im2191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the FIST programme for the data collection on the Oxford single-crystal diffractometer at SSCU, IISc, Bangalore. We also thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

As part of our search for new quinoline analogues, we focused on N-alkylation of 2-pyridinone using 2-chloro-3-(chloromethyl)-8-methylquinoline. N-alkylations are used in the synthesis of various heterocyclic (Dandepally & Williams, 2009) naturally occurring alkaloids. The chemistry of N-alkylation has received much attention due to their usefulness as building blocks in organic synthesis (Roopan et al., 2010). Compounds found in nature display a wide range of diversity in terms of their structures and physical and biological properties. The synthesis of privileged medicinal scaffolds is highly important as these compounds often act as a platform for developing pharmaceutical agents for diverse applications (Roopan & Khan, 2009). These vast applications have inspired the development of a number of methods for the preparation of pyridine nucleus (Banerjee & Sereda, 2009). However, literature studies reveal that most of the methods involve low isolated yields and long reaction times. On the basis of the interesting structures and biological activities exhibited by several heterocyclic systems possessing quinoline and pyridinone nuclei, we have synthesized a quinoline coupled pyridinone, i.e. 1-[(2-chloro-8-methylquinolin-3yl)-methyl]-pyridine-2(1H)-one.

The quinoline ring system (N1/C1–C3/C8/C9) of the title molecule in Fig. 1 is approximately planar, with maximum deviations of 0.021 (2) Å for C7, -0.021 (1) Å for N1 and 0.018 (2) Å for C5. It makes a dihedral angle of 85.93 (6)° with the pyridinone ring (N2/C11–C15). Intramolecular C—H···N, intermolecular C—H···O hydrogen bonding, together with weak C—H···π (Table 1) and π–π interactions [Cg1···Cg2(-x, 1/2 + y, 1/2 - z) = 3.5533 (9) Å and Cg2···Cg3(-x, -1/2 + y, 1/2 - z) = 3.7793 (9) Å, where Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C3/C8/C9, N2/C11–C15 and C4–C9 rings, respectively], characterize the crystal structure. Fig. 2 shows the hydrogen bonding in terms of a packing diagrams of the title compound.

Experimental

To a vigorously stirred solution of 2-pyridinone (95 mg, 1 mmol, in 2 ml DMF) KOtBu (112 mg, 1 mmol, in 10 ml THF) and 2-chloro-3-(chloromethyl)-8-methylquinoline (226 mg, 1 mmol) were added and the resulting mixture was refluxed at 343 K for 1 h. After the completion of the reaction it was cooled to room temperature and the excess of solvent was removed under reduced pressure. Crushed ice was mixed with the residue producing a white solid that was filtered and dried. Purification was performed by column chromatography using hexane and ethyl acetate (1:9) as the eluant. Crystals of suitable quality were grown by solvent evaporation from a solution of the compound in dichloromethane at room temperature.

Refinement

H atoms were located geometrically with C—H = 0.93–0.97 Å and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.
The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
The packing diagram and the hydrogen bonding interactions of the title compound viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C16H13ClN2OF(000) = 592
Mr = 284.73Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1116 reflections
a = 10.1513 (2) Åθ = 2.0–21.0°
b = 9.3917 (2) ŵ = 0.28 mm1
c = 14.1430 (2) ÅT = 295 K
β = 90.948 (2)°Block, colourless
V = 1348.17 (4) Å30.26 × 0.24 × 0.20 mm
Z = 4

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer2511 independent reflections
Radiation source: Enhance (Mo) X-ray Source2088 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −12→12
Tmin = 0.931, Tmax = 0.946k = −11→11
17649 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0626P)2 + 0.062P] where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.17214 (4)0.42990 (4)0.02479 (2)0.0424 (1)
O10.08041 (10)0.28868 (13)0.35614 (8)0.0481 (4)
N10.32267 (11)0.61310 (13)0.11096 (8)0.0315 (4)
N2−0.05971 (11)0.45168 (13)0.28993 (8)0.0331 (4)
C10.21630 (13)0.53822 (15)0.12066 (9)0.0292 (4)
C20.13534 (13)0.53361 (14)0.20141 (9)0.0281 (4)
C30.17568 (13)0.61625 (16)0.27547 (10)0.0304 (4)
C40.33798 (15)0.78326 (17)0.34745 (11)0.0407 (5)
C50.45224 (16)0.8575 (2)0.33878 (12)0.0498 (6)
C60.52323 (16)0.8519 (2)0.25493 (12)0.0499 (6)
C70.48186 (15)0.77503 (17)0.17819 (12)0.0405 (5)
C80.36339 (13)0.69521 (15)0.18602 (10)0.0307 (4)
C90.29139 (13)0.69933 (15)0.27116 (10)0.0305 (4)
C100.01318 (15)0.44264 (17)0.20158 (10)0.0365 (5)
C11−0.16498 (15)0.54157 (17)0.29568 (12)0.0430 (5)
C12−0.23606 (17)0.54973 (19)0.37505 (14)0.0520 (6)
C13−0.20074 (17)0.4635 (2)0.45186 (13)0.0507 (6)
C14−0.09706 (16)0.37454 (18)0.44725 (11)0.0433 (5)
C15−0.01782 (14)0.36501 (16)0.36452 (10)0.0342 (5)
C160.55794 (17)0.7727 (2)0.08775 (14)0.0626 (7)
H30.126000.618000.330100.0360*
H40.290900.787800.403200.0490*
H50.483400.912600.389100.0600*
H60.601700.902600.251400.0600*
H10A−0.044300.471700.149600.0440*
H10B0.038000.344300.190900.0440*
H11−0.188000.598000.244000.0520*
H12−0.307300.611600.378700.0630*
H13−0.249500.467600.506900.0610*
H14−0.076200.317700.499200.0520*
H16A0.510200.824500.039700.0940*
H16B0.569600.675900.067600.0940*
H16C0.642500.816100.098200.0940*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0429 (2)0.0526 (3)0.0316 (2)−0.0044 (2)0.0012 (2)−0.0104 (2)
O10.0446 (7)0.0512 (7)0.0485 (7)0.0098 (6)0.0006 (5)0.0002 (5)
N10.0289 (6)0.0345 (7)0.0311 (6)0.0019 (5)0.0023 (5)0.0027 (5)
N20.0289 (6)0.0350 (7)0.0354 (7)−0.0063 (5)0.0027 (5)−0.0005 (5)
C10.0295 (7)0.0312 (8)0.0269 (7)0.0038 (6)−0.0021 (5)0.0010 (6)
C20.0258 (7)0.0286 (7)0.0298 (7)0.0023 (6)0.0000 (5)0.0022 (6)
C30.0297 (7)0.0331 (8)0.0286 (7)0.0013 (6)0.0038 (5)−0.0001 (6)
C40.0464 (9)0.0410 (9)0.0347 (8)−0.0080 (7)0.0020 (7)−0.0044 (7)
C50.0568 (11)0.0489 (10)0.0433 (9)−0.0172 (9)−0.0076 (8)−0.0057 (8)
C60.0423 (9)0.0503 (10)0.0570 (10)−0.0196 (8)−0.0006 (8)0.0013 (9)
C70.0345 (8)0.0406 (9)0.0466 (9)−0.0065 (7)0.0036 (6)0.0031 (7)
C80.0293 (7)0.0288 (8)0.0341 (7)0.0018 (6)−0.0005 (6)0.0026 (6)
C90.0314 (7)0.0288 (8)0.0314 (7)−0.0001 (6)−0.0001 (6)0.0007 (6)
C100.0358 (8)0.0439 (9)0.0299 (7)−0.0073 (7)0.0017 (6)−0.0022 (6)
C110.0366 (9)0.0367 (9)0.0556 (10)−0.0018 (7)0.0006 (7)0.0073 (8)
C120.0406 (9)0.0459 (11)0.0701 (12)0.0062 (8)0.0151 (8)−0.0027 (9)
C130.0518 (10)0.0521 (11)0.0487 (10)−0.0047 (8)0.0186 (8)−0.0046 (8)
C140.0475 (9)0.0463 (10)0.0363 (8)−0.0073 (8)0.0046 (7)0.0008 (7)
C150.0351 (8)0.0324 (8)0.0352 (8)−0.0072 (7)−0.0003 (6)−0.0032 (6)
C160.0502 (11)0.0774 (14)0.0609 (12)−0.0236 (10)0.0197 (9)−0.0053 (10)

Geometric parameters (Å, °)

Cl1—C11.7476 (14)C11—C121.347 (3)
O1—C151.2354 (18)C12—C131.397 (3)
N1—C11.2978 (18)C13—C141.346 (2)
N1—C81.3704 (18)C14—C151.434 (2)
N2—C101.4651 (18)C3—H30.9300
N2—C111.3653 (19)C4—H40.9300
N2—C151.3934 (19)C5—H50.9300
C1—C21.4187 (18)C6—H60.9300
C2—C31.3612 (19)C10—H10A0.9700
C2—C101.506 (2)C10—H10B0.9700
C3—C91.4123 (19)C11—H110.9300
C4—C51.361 (2)C12—H120.9300
C4—C91.412 (2)C13—H130.9300
C5—C61.399 (2)C14—H140.9300
C6—C71.364 (2)C16—H16A0.9600
C7—C81.423 (2)C16—H16B0.9600
C7—C161.505 (3)C16—H16C0.9600
C8—C91.419 (2)
Cl1···O1i3.2706 (12)C14···C14ix3.401 (2)
Cl1···H10A2.8700C15···C3iv3.441 (2)
Cl1···H10Aii2.9200C15···C2iv3.456 (2)
Cl1···H16Biii3.1100C15···C33.331 (2)
Cl1···H10B2.8500C1···H6vi2.8600
O1···C23.2298 (17)C2···H6vi3.0000
O1···C2iv3.3375 (17)C3···H6vi3.0500
O1···C11iv3.286 (2)C3···H10Bvii3.0900
O1···Cl1v3.2706 (12)C8···H6vi2.9100
O1···H10B2.4300C9···H6vi3.0100
O1···H11iv2.5400C11···H33.0700
O1···H16Cvi2.8900C15···H32.8400
N1···C14vii3.448 (2)H3···N22.5100
N1···C5vi3.382 (2)H3···C113.0700
N2···C9iv3.4391 (18)H3···C152.8400
N1···H16B2.6600H3···H42.5200
N1···H5vi2.7200H3···H14ix2.5500
N1···H6vi2.8700H4···H32.5200
N1···H16A2.9400H5···N1viii2.7200
N2···H32.5100H6···H16C2.3600
C1···C14vii3.511 (2)H6···N1viii2.8700
C2···C15vii3.456 (2)H6···C1viii2.8600
C2···O13.2298 (17)H6···C2viii3.0000
C2···O1vii3.3375 (17)H6···C3viii3.0500
C3···C15vii3.441 (2)H6···C8viii2.9100
C3···C113.545 (2)H6···C9viii3.0100
C3···C153.331 (2)H10A···Cl12.8700
C4···C11vii3.599 (2)H10A···H112.3200
C5···N1viii3.382 (2)H10A···Cl1ii2.9200
C6···C8viii3.519 (2)H10B···Cl12.8500
C8···C13vii3.574 (2)H10B···O12.4300
C8···C6vi3.519 (2)H10B···C3iv3.0900
C9···C11vii3.582 (2)H11···H10A2.3200
C9···N2vii3.4391 (18)H11···O1vii2.5400
C11···C9iv3.582 (2)H14···H3ix2.5500
C11···C33.545 (2)H16A···N12.9400
C11···C4iv3.599 (2)H16B···N12.6600
C11···O1vii3.286 (2)H16B···Cl1iii3.1100
C13···C8iv3.574 (2)H16C···H62.3600
C14···N1iv3.448 (2)H16C···O1viii2.8900
C14···C1iv3.511 (2)
C1—N1—C8117.64 (12)O1—C15—C14125.40 (14)
C10—N2—C11119.57 (12)N2—C15—C14114.40 (13)
C10—N2—C15117.37 (12)C2—C3—H3119.00
C11—N2—C15123.06 (12)C9—C3—H3119.00
Cl1—C1—N1115.89 (10)C5—C4—H4120.00
Cl1—C1—C2117.53 (10)C9—C4—H4120.00
N1—C1—C2126.57 (12)C4—C5—H5120.00
C1—C2—C3115.54 (12)C6—C5—H5120.00
C1—C2—C10120.44 (12)C5—C6—H6119.00
C3—C2—C10124.02 (12)C7—C6—H6119.00
C2—C3—C9121.44 (13)N2—C10—H10A109.00
C5—C4—C9119.52 (14)N2—C10—H10B109.00
C4—C5—C6120.60 (16)C2—C10—H10A109.00
C5—C6—C7122.57 (16)C2—C10—H10B109.00
C6—C7—C8117.80 (15)H10A—C10—H10B108.00
C6—C7—C16121.89 (15)N2—C11—H11120.00
C8—C7—C16120.31 (14)C12—C11—H11119.00
N1—C8—C7118.73 (13)C11—C12—H12121.00
N1—C8—C9121.30 (12)C13—C12—H12121.00
C7—C8—C9119.96 (13)C12—C13—H13120.00
C3—C9—C4122.95 (13)C14—C13—H13120.00
C3—C9—C8117.51 (13)C13—C14—H14119.00
C4—C9—C8119.54 (13)C15—C14—H14119.00
N2—C10—C2113.33 (12)C7—C16—H16A110.00
N2—C11—C12121.03 (15)C7—C16—H16B109.00
C11—C12—C13118.75 (16)C7—C16—H16C109.00
C12—C13—C14120.86 (16)H16A—C16—H16B109.00
C13—C14—C15121.87 (15)H16A—C16—H16C109.00
O1—C15—N2120.20 (13)H16B—C16—H16C109.00
C8—N1—C1—Cl1−177.53 (10)C2—C3—C9—C80.9 (2)
C8—N1—C1—C20.9 (2)C9—C4—C5—C60.4 (3)
C1—N1—C8—C7178.16 (13)C5—C4—C9—C3178.26 (15)
C1—N1—C8—C9−0.5 (2)C5—C4—C9—C8−0.9 (2)
C11—N2—C10—C297.14 (15)C4—C5—C6—C71.0 (3)
C15—N2—C10—C2−83.63 (16)C5—C6—C7—C8−1.7 (3)
C10—N2—C11—C12178.31 (15)C5—C6—C7—C16178.65 (17)
C15—N2—C11—C12−0.9 (2)C6—C7—C8—N1−177.62 (14)
C10—N2—C15—O12.8 (2)C6—C7—C8—C91.1 (2)
C10—N2—C15—C14−177.33 (13)C16—C7—C8—N12.1 (2)
C11—N2—C15—O1−177.96 (14)C16—C7—C8—C9−179.25 (14)
C11—N2—C15—C141.9 (2)N1—C8—C9—C3−0.4 (2)
Cl1—C1—C2—C3178.03 (10)N1—C8—C9—C4178.84 (13)
Cl1—C1—C2—C10−2.45 (18)C7—C8—C9—C3−179.02 (13)
N1—C1—C2—C3−0.4 (2)C7—C8—C9—C40.2 (2)
N1—C1—C2—C10179.10 (14)N2—C11—C12—C13−0.4 (3)
C1—C2—C3—C9−0.6 (2)C11—C12—C13—C140.5 (3)
C10—C2—C3—C9179.96 (14)C12—C13—C14—C150.6 (3)
C1—C2—C10—N2−179.27 (12)C13—C14—C15—O1178.08 (16)
C3—C2—C10—N20.2 (2)C13—C14—C15—N2−1.7 (2)
C2—C3—C9—C4−178.28 (14)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x, y−1/2, −z+1/2; (v) x, −y+1/2, z+1/2; (vi) −x+1, y−1/2, −z+1/2; (vii) −x, y+1/2, −z+1/2; (viii) −x+1, y+1/2, −z+1/2; (ix) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···N20.932.512.8560 (18)103
C11—H11···O1vii0.932.543.286 (2)137
C6—H6···Cg1viii0.932.613.4457 (18)150

Symmetry codes: (vii) −x, y+1/2, −z+1/2; (viii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2191).

References

  • Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, o3187. [PMC free article] [PubMed]
  • Banerjee, S. & Sereda, G. (2009). Tetrahedron Lett.50, 6959–6962.
  • Clegg, W. & Nichol, G. S. (2004). Acta Cryst. E60, o1433–o1436.
  • Dandepally, S. R. & Williams, A. L. (2009). Tetrahedron Lett.50, 1395–1398.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Nichol, G. S. & Clegg, W. (2005). Acta Cryst. C61, o383–o385. [PubMed]
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161–169.
  • Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). Tetrahedron Lett 51, 2309–2311.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography