PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1211.
Published online 2010 April 30. doi:  10.1107/S1600536810015096
PMCID: PMC2979144

1,1′-Methyl­enedipyridinium dichloride monohydrate

Abstract

In the crystal structure of the title salt, C11H12N2 2+·2Cl·H2O, the dication adopts a butterfly shape [dihedral angle between rings = 69.0 (1)°] with the water mol­ecule lying in the V-shaped cavity. Each O—H bond of the water molecule lies parallel to an aromatic ring and forms an O—H(...)Cl inter­action to a chloride anion. The methyl­ene C atom in the dication and the water O atoms lie on special positions of twofold site symmetry.

Related literature

For the synthesis, see: Almarzoqi et al. (1986 [triangle]). For the crystal structure of dipyridiniomethane diiodide, see: Brüdgam & Hartl (1986 [triangle]). For background to the use of similar compounds in the synthesis of coordination polymers, see: Niu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1211-scheme1.jpg

Experimental

Crystal data

  • C11H12N2 2+·2Cl·H2O
  • M r = 261.14
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1211-efi1.jpg
  • a = 16.3384 (15) Å
  • b = 19.0958 (18) Å
  • c = 7.7916 (7) Å
  • V = 2430.9 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.51 mm−1
  • T = 100 K
  • 0.30 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.861, T max = 0.950
  • 5641 measured reflections
  • 1389 independent reflections
  • 1333 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.056
  • S = 1.04
  • 1389 reflections
  • 78 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 642 Friedel pairs
  • Flack parameter: 0.01 (6)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015096/jh2148sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015096/jh2148Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Zhengzhou University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Dichloromethane reacts with tertiary amines under high pressure to form bis-ammonium salts, as exemplified by its reaction with pyridine (Almarzoqi et al., 1986). This class of compounds represents a class of ammonium salts that are excellent directing regents for the construction of metal–organic architectures (Niu et al., 2008). The structure of the dipyridiniomethane dichloride homolog has not been reported but the structure of the anhydrous diiodide has been known for some time. The salt shows short cation–iodine contacts [3.620 (7)–3.742 (9) Å], which are believed to render the salt useful for studing charge-transfer processes in the solid state (Brüdgam & Hartl, 1986). Dipyridiniomethane dichloride crystallizes as a dihydrate (Scheme I, Fig. 1). The dication lies about a two-fold rotation axis that passes through the methylene carbon atom [N–C–N 110.2 (2) °]; the water molecule also lies on a two-fold rotation axis; the molecule is hydrogen–bond donor to the chorine atom.

Experimental

The compound was synthesized as described by Almarzoqi et al. (1986). The attempt to react it with CuI and [NH4]2[WO2S2] in a methanol-DMF mixture. returned the salt as rice-bead shaped yellow crystals.

Refinement

Hydrogen atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The water H-atom was located in a difference Fourier map, and was refined with a restraint of O–H 0.84±0.01 Å.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of [C11H12N2]2+ 2Cl-.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C11H12N22+·2Cl·H2OF(000) = 1088
Mr = 261.14Dx = 1.427 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F2 -2dCell parameters from 2704 reflections
a = 16.3384 (15) Åθ = 3.1–28.2°
b = 19.0958 (18) ŵ = 0.51 mm1
c = 7.7916 (7) ÅT = 100 K
V = 2430.9 (4) Å3Bead, yellow
Z = 80.30 × 0.15 × 0.10 mm

Data collection

Bruker SMART APEX diffractometer1389 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.861, Tmax = 0.950k = −23→24
5641 measured reflectionsl = −10→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056w = 1/[σ2(Fo2) + (0.0329P)2 + 1.2206P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1389 reflectionsΔρmax = 0.23 e Å3
78 parametersΔρmin = −0.16 e Å3
2 restraintsAbsolute structure: Flack (1983), 642 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.12462 (2)0.17275 (2)0.49998 (5)0.01587 (10)
O1W0.25000.25000.2443 (2)0.0215 (3)
H10.2178 (13)0.2280 (11)0.311 (3)0.045 (7)*
N10.18673 (8)0.21731 (7)−0.11511 (17)0.0151 (3)
C10.19934 (9)0.15212 (8)−0.0531 (2)0.0166 (3)
H1A0.24900.1283−0.07800.020*
C20.14070 (9)0.12028 (8)0.0456 (2)0.0179 (3)
H20.14950.07440.08920.021*
C30.06819 (9)0.15569 (8)0.0813 (2)0.0181 (3)
H30.02720.13450.15030.022*
C40.05662 (9)0.22220 (8)0.0150 (2)0.0206 (3)
H40.00720.24680.03730.025*
C50.11688 (10)0.25259 (9)−0.0834 (2)0.0185 (3)
H50.10930.2983−0.12890.022*
C60.25000.2500−0.2232 (3)0.0204 (5)
H6A0.27540.2141−0.29780.024*0.50
H6B0.22460.2859−0.29780.024*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01387 (14)0.01789 (17)0.01585 (16)−0.00100 (12)0.00111 (14)0.00074 (14)
O1W0.0237 (8)0.0210 (8)0.0199 (9)−0.0049 (6)0.0000.000
N10.0153 (6)0.0175 (6)0.0127 (6)−0.0044 (5)0.0002 (5)−0.0016 (5)
C10.0141 (7)0.0166 (7)0.0191 (8)−0.0001 (6)−0.0005 (6)−0.0034 (6)
C20.0184 (7)0.0149 (8)0.0204 (8)−0.0012 (6)−0.0016 (6)0.0001 (6)
C30.0153 (7)0.0222 (8)0.0166 (8)−0.0065 (6)0.0019 (6)−0.0034 (7)
C40.0150 (6)0.0207 (7)0.0261 (9)0.0011 (6)0.0001 (7)−0.0066 (7)
C50.0183 (8)0.0154 (8)0.0219 (9)−0.0013 (6)−0.0067 (6)−0.0025 (7)
C60.0199 (10)0.0282 (12)0.0131 (11)−0.0111 (9)0.0000.000

Geometric parameters (Å, °)

O1W—H10.85 (1)C3—C41.384 (2)
N1—C51.348 (2)C3—H30.9500
N1—C11.351 (2)C4—C51.376 (2)
N1—C61.4724 (18)C4—H40.9500
C1—C21.371 (2)C5—H50.9500
C1—H1A0.9500C6—N1i1.4724 (18)
C2—C31.392 (2)C6—H6A0.9900
C2—H20.9500C6—H6B0.9900
C5—N1—C1121.60 (14)C5—C4—C3119.82 (14)
C5—N1—C6119.16 (12)C5—C4—H4120.1
C1—N1—C6119.22 (12)C3—C4—H4120.1
N1—C1—C2120.18 (15)N1—C5—C4119.80 (16)
N1—C1—H1A119.9N1—C5—H5120.1
C2—C1—H1A119.9C4—C5—H5120.1
C1—C2—C3119.44 (15)N1i—C6—N1110.20 (18)
C1—C2—H2120.3N1i—C6—H6A109.6
C3—C2—H2120.3N1—C6—H6A109.6
C4—C3—C2119.15 (14)N1i—C6—H6B109.6
C4—C3—H3120.4N1—C6—H6B109.6
C2—C3—H3120.4H6A—C6—H6B108.1
C5—N1—C1—C2−0.4 (2)C1—N1—C5—C40.3 (2)
C6—N1—C1—C2−178.98 (14)C6—N1—C5—C4178.89 (16)
N1—C1—C2—C30.0 (2)C3—C4—C5—N10.2 (2)
C1—C2—C3—C40.5 (2)C5—N1—C6—N1i97.68 (14)
C2—C3—C4—C5−0.6 (2)C1—N1—C6—N1i−83.73 (13)

Symmetry codes: (i) −x+1/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H1···Cl10.85 (1)2.37 (1)3.216 (1)177 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2148).

References

  • Almarzoqi, B., George, A. V. & Isaacs, N. S. (1986). Tetrahedron, 42, 601–607.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Brüdgam, I. & Hartl, H. (1986). Acta Cryst. C42, 866–868.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Niu, Y. Y., Wu, B. L., Guo, X. L., Song, Y. L., Liu, X. C., Zhang, H. Y., Hou, H. W., Niu, C. Y. & Ng, S. W. (2008). Cryst. Growth Des. 8, 2393–2401.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography