PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): i37–i38.
Published online 2010 April 17. doi:  10.1107/S160053681001305X
PMCID: PMC2979140

Nonapotassium trialuminium hexa­phosphate

Abstract

In the title compound, K9Al3(PO4)6, the anionic substructure is built of inter­linked [PO4] and [AlO4] tetra­hedra. Each O atom of the [AlO4] tetra­hedron is common to a positionally different [PO4] tetra­hedron; thus, each [AlO4] tetra­hedron is surrounded by four positionally different [PO4] tetra­hedra. On the other hand, each [PO4] tetra­hedron shares its two O atoms with two positionally different [AlO4] tetra­hedra; the other two phosphate O atoms are terminal ones coordinated by K atoms. The terminal O atoms are usually closer to the K atoms than the bridging O atoms between the [AlO4] and [PO4] tetra­hedra. There are nine symmetry-independent K atoms in the structure. The coordination numbers of the K atoms are 6 or 7 or 8 up to a distance of 3.31 Å. There are channels in the anionic substructure oriented along the [10An external file that holds a picture, illustration, etc.
Object name is e-66-00i37-efi1.jpg] direction that are filled by K atoms.

Related literature

For applications of metal phosphates, see: Barone & Nancollas (1978 [triangle]); Dickinson et al. (1996 [triangle]). For non-centrosymmetric phosphates with non-linear optical properties, see: Noor & Dam (1986 [triangle]); Aguilo & Wuensdregt (1985 [triangle]); Masse & Grenier (1971 [triangle]). For the non-centrosymmetric structures of A 3Al2(PO4)3 (A = K, Rb and Tl), which have three-dimensional [Al2P3O12]3− frameworks, see: Nandini Devi & Vidyasagar (2000 [triangle]). For the structure of KAlP2O7, see: Ng & Calvo (1973 [triangle]);

Experimental

Crystal data

  • K9Al3(PO4)6
  • M r = 1002.66
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00i37-efi4.jpg
  • a = 20.289 (4) Å
  • b = 9.835 (2) Å
  • c = 13.521 (3) Å
  • β = 100.56 (3)°
  • V = 2652.2 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.02 mm−1
  • T = 113 K
  • 0.26 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.622, T max = 0.713
  • 35263 measured reflections
  • 11751 independent reflections
  • 10169 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.059
  • S = 1.10
  • 11751 reflections
  • 380 parameters
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005 [triangle]).

Table 1
Characterization of K—O coordination spheres; coordination number as well as minimal and maximal distances (Å) within the coordination spheres for each K atom are given
Table 2
Characterization of K—O coordination spheres; the minimal and maximal K—O distances (Å) for the terminal and bridging O atoms (there is only one bridging oxygen in the coordination spheres of K2, K3, and K8)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001305X/fb2181sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001305X/fb2181Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China under grant No. 50672104.

supplementary crystallographic information

Comment

Various metal phosphates have been widely used due to their good optical and chemical properties. For example, Ca5(PO4)3F has been used in dentistry (Barone & Nancollas, 1978) and Sr5(PO4)3F (Dickinson et al., 1996) has been used as a laser crystal in laser technology. Especially, some non-centrosymmetric phosphates have been used as important crystals with nonlinear optical properties, such as KH2PO4 (KDP) (Noor & Dam, 1986), NH4H2PO4 (ADP) (Aguilo & Wuensdregt, 1985) and KTiOPO4 (KTP) (Masse & Grenier, 1971). Aluminophosphates have attracted much attention because of their diverse structures.

Aluminophosphates contain 1D, 2D or 3D infinite frameworks with varying chemical composition. Nandini Devi & Vidyasagar (2000) reported non-centrosymmetric structures of A3Al2(PO4)3 (A=K, Rb and Tl). These compounds have 3D [Al2P3O12]3- frameworks. The latter study has inspired us to investigate the A2O—Al2O3—P2O5 (A=K, Rb, Cs) system in order to search for new functional materials. As a result of our study a new aluminophosphate, the title structure K9Al3(PO4)6, has been discovered.

In K9Al3(PO4)6, all the aluminium and phosphorus atoms adopt the tetrahedral coordination. Each [AlO4] tetrahedron shares each of its O atoms with a positionally different neighbour [PO4] tetrahedron, while each [PO4] tetrahedron shares its two O atoms with two different neighbour [AlO4] tetrahedral. There are two pairs of chemically different O atoms around the P atoms: The terminal and the bridging oxygens that are involved in P-O-Al connections (Fig. 1). The P-O distance to the bridging oxygens vary in the interval 1.5645 (10) - 1.5881 (8) Å, while the P-O distances to the terminal oxygens are in the interval 1.4993 (10) - 1.5087 (9) Å.

There are channels in the anionic substructure along [1 0 1] (Fig. 2). These channels are filled by K atoms (Fig. 3). The coordination numbers of K atoms are 6 or 7 or 8 up to the distance 3.31 Å (Tab. 1). The terminal phosphate oxygens tend to be closer to K atoms than the bridging ones (Tab. 2).

Experimental

Single crystals of K9Al3(PO4)6 have been obtained by the high temperature solution method in a electric resistance furnace. Starting materials of the analytical grade KH2PO4 (136.15 g) and K2CO3 (69.03 g), high purity Al2O3 (51.08 g) and KF (58.33 g), in the respective molar ratio 2:1:1:2, were mixed and melt in a platinum crucible with a diameter of 60 mm and a height of 60 mm at 1273 K. The solution was stirred with a platinum plate for 24 hours. After the solution had been cooled to 1123 K at a rate of 10 Kh-1, a platinum wire attached to an alumina shaft was slowly dipped into the solution, which was then followed by a slow cooling at the rate of 0.5 Kh-1. Thus, a few colourless, transparent plate K9Al3(PO4)6 crystals with typical size of 3 × 3 × 0.5 mm crystallized on the platinum wire. After one week, the crystals were drawn out from the solution at 1050 K and cooled down to room temperature at the rate of 10 Kh-1.

Refinement

All the atomic have been refined anisotropically. The maximal (0.542 eÅ-3) and minimal (-0.519 eÅ-3) electron density peaks are situated 0.67 Å from O16 and 0.56 Å from P4, respectively.

Figures

Fig. 1.
Unit cell of K9Al3(PO4)6. The displacement ellipsoids are drawn at the 90% probability level.
Fig. 2.
Anionic framework of K9Al3(PO4)6, viewed along [1 0 1].
Fig. 3.
Anionic framework of K9Al3(PO4)6 filled with K atoms, viewed along [101].

Crystal data

K9Al3(PO4)6F(000) = 1968
Mr = 1002.66Dx = 2.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11243 reflections
a = 20.289 (4) Åθ = 1.5–36.1°
b = 9.835 (2) ŵ = 2.02 mm1
c = 13.521 (3) ÅT = 113 K
β = 100.56 (3)°Block, colorless
V = 2652.2 (9) Å30.26 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART 1000 diffractometer11751 independent reflections
Radiation source: rotating anode10169 reflections with I > 2σ(I)
confocalRint = 0.028
Detector resolution: 7.31 pixels mm-1θmax = 36.4°, θmin = 2.0°
ω and [var phi] scansh = −32→32
Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2005)k = −15→14
Tmin = 0.622, Tmax = 0.713l = −21→21
35263 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2004P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.54 e Å3
11751 reflectionsΔρmin = −0.52 e Å3
380 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0094 (3)
0 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.298252 (13)0.34947 (3)0.33480 (2)0.00581 (5)
P20.533853 (13)0.58644 (3)0.36009 (2)0.00594 (5)
P30.187195 (13)0.57954 (3)0.69175 (2)0.00569 (5)
P4−0.043493 (13)0.14690 (3)0.10689 (2)0.00566 (5)
P50.356473 (13)0.65268 (3)0.99111 (2)0.00556 (5)
P60.134551 (13)0.14154 (3)0.50989 (2)0.00546 (5)
Al10.089399 (16)0.07540 (3)0.02839 (2)0.00532 (6)
Al20.248584 (16)0.06371 (3)0.38928 (2)0.00494 (6)
Al30.404521 (16)0.56335 (3)0.44487 (2)0.00506 (6)
O10.30136 (4)0.20134 (8)0.37989 (6)0.01040 (14)
O20.30827 (5)0.34641 (8)0.22768 (6)0.01385 (16)
O30.23519 (4)0.41939 (8)0.35084 (7)0.01469 (16)
O40.36066 (5)0.41798 (8)0.40128 (7)0.01553 (18)
O50.57090 (4)0.71131 (8)0.40329 (6)0.01132 (15)
O60.54290 (4)0.54825 (8)0.25534 (6)0.00961 (14)
O70.45662 (4)0.60301 (9)0.35924 (6)0.01063 (14)
O80.55470 (4)0.45990 (7)0.43131 (6)0.00885 (14)
O90.24384 (4)0.56940 (8)0.63432 (6)0.01142 (15)
O100.11777 (4)0.54245 (7)0.62321 (6)0.00823 (14)
O110.17814 (4)0.71622 (8)0.73771 (6)0.01017 (14)
O120.19385 (4)0.46544 (8)0.77559 (6)0.00888 (14)
O13−0.09231 (4)0.25724 (7)0.06586 (6)0.00840 (13)
O140.01158 (4)0.14074 (7)0.03954 (6)0.00818 (14)
O15−0.07987 (4)0.00350 (7)0.09080 (6)0.00757 (13)
O16−0.01117 (4)0.16378 (8)0.21565 (6)0.01014 (14)
O170.34118 (4)0.65873 (8)1.09580 (6)0.01213 (15)
O180.35063 (4)0.79852 (7)0.94185 (6)0.00881 (14)
O190.42285 (4)0.58847 (8)0.98471 (7)0.01214 (15)
O200.29847 (4)0.57812 (8)0.91867 (6)0.01111 (15)
O210.20437 (4)0.09364 (8)0.48639 (6)0.00835 (13)
O220.11949 (4)0.05905 (7)0.59700 (6)0.00888 (14)
O230.14854 (4)0.29353 (7)0.54464 (6)0.00891 (14)
O240.08212 (4)0.14116 (8)0.41564 (6)0.01017 (14)
K10.287854 (12)0.17131 (2)0.079146 (18)0.00949 (4)
K20.420108 (12)0.44811 (2)0.178588 (19)0.01038 (4)
K30.233669 (12)0.57239 (2)0.160286 (19)0.01005 (4)
K40.551481 (12)0.66477 (2)0.075535 (18)0.00984 (4)
K50.370503 (13)0.84243 (2)0.243608 (19)0.01203 (5)
K60.054431 (12)0.67635 (2)0.106782 (18)0.00886 (4)
K70.213027 (11)0.66267 (2)0.427477 (18)0.00950 (4)
K80.058558 (12)0.93957 (2)0.292875 (18)0.01007 (4)
K90.116931 (12)0.29859 (2)0.266699 (19)0.01164 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.00581 (11)0.00550 (10)0.00599 (12)−0.00069 (8)0.00070 (9)−0.00048 (8)
P20.00578 (11)0.00678 (10)0.00535 (11)0.00080 (8)0.00123 (9)0.00050 (8)
P30.00625 (11)0.00554 (10)0.00511 (11)−0.00021 (8)0.00058 (9)0.00017 (8)
P40.00518 (11)0.00625 (10)0.00552 (11)−0.00004 (8)0.00088 (8)−0.00072 (8)
P50.00535 (11)0.00497 (10)0.00632 (12)−0.00068 (8)0.00096 (9)−0.00019 (8)
P60.00536 (11)0.00549 (10)0.00549 (11)0.00029 (8)0.00088 (8)0.00015 (8)
Al10.00504 (13)0.00500 (12)0.00582 (14)−0.00004 (9)0.00069 (11)−0.00028 (10)
Al20.00504 (13)0.00437 (12)0.00522 (14)0.00060 (9)0.00042 (10)−0.00012 (10)
Al30.00478 (13)0.00426 (12)0.00582 (14)0.00029 (9)0.00011 (10)−0.00015 (10)
O10.0108 (3)0.0065 (3)0.0133 (4)−0.0026 (2)0.0007 (3)0.0015 (3)
O20.0213 (4)0.0131 (4)0.0086 (4)0.0002 (3)0.0065 (3)0.0005 (3)
O30.0110 (4)0.0129 (4)0.0217 (5)0.0031 (3)0.0072 (3)−0.0006 (3)
O40.0157 (4)0.0068 (3)0.0195 (4)−0.0029 (3)−0.0091 (3)0.0002 (3)
O50.0147 (4)0.0073 (3)0.0115 (4)−0.0024 (3)0.0013 (3)0.0000 (3)
O60.0100 (3)0.0133 (3)0.0060 (3)0.0015 (3)0.0026 (3)−0.0003 (3)
O70.0071 (3)0.0172 (4)0.0079 (4)0.0033 (3)0.0023 (3)0.0021 (3)
O80.0114 (3)0.0071 (3)0.0071 (3)0.0011 (2)−0.0006 (3)0.0011 (3)
O90.0096 (3)0.0145 (4)0.0112 (4)−0.0004 (3)0.0045 (3)−0.0001 (3)
O100.0077 (3)0.0085 (3)0.0073 (3)0.0005 (2)−0.0018 (3)−0.0011 (3)
O110.0130 (4)0.0069 (3)0.0100 (4)0.0001 (3)0.0004 (3)−0.0022 (3)
O120.0094 (3)0.0087 (3)0.0073 (3)−0.0019 (2)−0.0016 (3)0.0030 (3)
O130.0081 (3)0.0079 (3)0.0094 (3)0.0018 (2)0.0020 (3)0.0008 (3)
O140.0064 (3)0.0083 (3)0.0108 (4)0.0005 (2)0.0042 (3)0.0004 (3)
O150.0091 (3)0.0068 (3)0.0072 (3)−0.0023 (2)0.0026 (3)−0.0008 (2)
O160.0112 (4)0.0116 (3)0.0069 (4)0.0002 (3)−0.0004 (3)−0.0022 (3)
O170.0165 (4)0.0117 (3)0.0093 (4)−0.0007 (3)0.0054 (3)0.0000 (3)
O180.0083 (3)0.0057 (3)0.0119 (4)−0.0020 (2)0.0005 (3)0.0018 (3)
O190.0080 (3)0.0113 (3)0.0175 (4)0.0025 (3)0.0033 (3)0.0004 (3)
O200.0107 (3)0.0078 (3)0.0130 (4)−0.0045 (3)−0.0027 (3)0.0008 (3)
O210.0077 (3)0.0107 (3)0.0070 (3)0.0023 (2)0.0022 (3)0.0001 (3)
O220.0101 (3)0.0092 (3)0.0078 (3)−0.0004 (2)0.0028 (3)0.0015 (3)
O230.0072 (3)0.0051 (3)0.0139 (4)0.0009 (2)0.0006 (3)−0.0007 (3)
O240.0083 (3)0.0133 (3)0.0079 (4)0.0006 (3)−0.0011 (3)−0.0007 (3)
K10.00909 (9)0.00962 (9)0.00989 (10)−0.00004 (7)0.00210 (8)0.00004 (7)
K20.01006 (9)0.00876 (9)0.01141 (11)−0.00028 (7)−0.00044 (8)−0.00135 (8)
K30.00859 (9)0.00980 (9)0.01165 (11)−0.00057 (7)0.00156 (8)−0.00163 (8)
K40.01018 (9)0.01036 (9)0.00913 (10)−0.00115 (7)0.00219 (8)0.00072 (7)
K50.01415 (11)0.01086 (10)0.01155 (11)−0.00281 (7)0.00362 (8)−0.00148 (8)
K60.00872 (9)0.00997 (9)0.00819 (10)0.00093 (7)0.00236 (7)0.00127 (7)
K70.00723 (9)0.01039 (9)0.01103 (10)0.00059 (7)0.00207 (8)0.00037 (7)
K80.01277 (10)0.00765 (9)0.01026 (10)0.00019 (7)0.00335 (8)0.00097 (7)
K90.01126 (10)0.01316 (10)0.01026 (10)−0.00163 (7)0.00134 (8)0.00316 (8)

Geometric parameters (Å, °)

P1—O21.4993 (10)O16—K6ix2.7060 (11)
P1—O31.5030 (9)O16—K8xi2.7225 (10)
P1—O41.5645 (10)O16—K8ix2.8730 (10)
P1—O11.5760 (8)O16—K92.8864 (10)
P2—O51.5011 (9)O17—K3xii2.6337 (11)
P2—O61.5087 (9)O17—K5xii2.6788 (10)
P2—O71.5734 (9)O17—K2xii2.7296 (10)
P2—O81.5829 (8)O18—Al3viii1.7396 (8)
P3—O91.5036 (10)O18—K7viii2.7891 (10)
P3—O111.5062 (8)O18—K5viii3.1088 (10)
P3—O101.5803 (9)O19—K4iv2.7005 (10)
P3—O121.5831 (8)O19—K4xii2.7761 (11)
P4—O131.5049 (8)O19—K2xii2.9721 (10)
P4—O161.5056 (9)O19—K5viii3.3087 (12)
P4—O141.5667 (9)O20—Al2vi1.7264 (8)
P4—O151.5881 (8)O20—K7viii3.0973 (10)
P5—O191.5043 (9)O20—K5viii3.1013 (12)
P5—O171.5049 (9)O21—K3vi2.8347 (9)
P5—O201.5682 (9)O21—K1vi3.0012 (10)
P5—O181.5767 (8)O22—K3vi2.6539 (10)
P6—O241.5029 (10)O22—K6vi2.6802 (9)
P6—O221.5068 (9)O22—K9vi2.6965 (9)
P6—O231.5770 (8)O23—Al1vi1.7472 (8)
P6—O211.5794 (9)O23—K1vi2.8007 (10)
Al1—O141.7366 (9)O23—K9vi3.3094 (11)
Al1—O10i1.7457 (9)O24—K8xi2.5736 (9)
Al1—O23i1.7472 (8)O24—K92.7337 (10)
Al1—O15ii1.7671 (9)O24—K6ix2.7531 (10)
Al2—O20i1.7264 (8)K1—O9i2.6837 (10)
Al2—O11.7449 (9)K1—O23i2.8007 (10)
Al2—O211.7457 (10)K1—O5v2.8591 (11)
Al2—O12i1.7472 (10)K1—O21i3.0012 (10)
Al3—O41.7295 (9)K1—O1i3.0286 (10)
Al3—O18iii1.7396 (8)K1—O4i3.1684 (13)
Al3—O8iv1.7411 (10)K1—O3i3.2026 (12)
Al3—O71.7490 (10)K2—O5v2.5994 (9)
O1—K4v2.9576 (11)K2—O17xiii2.7296 (10)
O1—K1vi3.0286 (10)K2—O19xiii2.9721 (10)
O2—K12.6202 (10)K3—O17xiii2.6337 (11)
O2—K22.6725 (11)K3—O22i2.6539 (10)
O2—K32.7486 (10)K3—O11iii2.6683 (9)
O3—K72.6779 (10)K3—O21i2.8347 (9)
O3—K92.7316 (11)K4—O19iv2.7005 (10)
O3—K32.9790 (11)K4—O5iii2.7205 (10)
O3—K1vi3.2026 (12)K4—O19xiii2.7761 (11)
O4—K4v3.0451 (10)K4—O1vii2.9576 (11)
O4—K1vi3.1684 (13)K4—O4vii3.0451 (10)
O5—K2vii2.5994 (9)K5—O6vii2.6787 (9)
O5—K4viii2.7205 (10)K5—O17xiii2.6788 (10)
O5—K1vii2.8591 (11)K5—O9iii2.8544 (12)
O6—K5v2.6787 (9)K5—O20iii3.1013 (12)
O6—K22.7029 (11)K5—O18iii3.1088 (10)
O6—K42.7219 (9)K5—O8vii3.2476 (11)
O7—K22.8587 (10)K5—O19iii3.3087 (12)
O7—K53.1685 (10)K6—O13x2.6690 (10)
O8—Al3iv1.7411 (10)K6—O22i2.6803 (9)
O8—K5v3.2476 (11)K6—O16xiv2.7060 (11)
O9—K1vi2.6837 (10)K6—O24xiv2.7531 (10)
O9—K5viii2.8544 (12)K6—O14x2.8235 (10)
O9—K72.9005 (11)K6—O11iii2.9867 (12)
O10—Al1vi1.7457 (9)K6—O10iii3.0404 (9)
O10—K8viii2.7834 (11)K7—O13xiv2.6369 (9)
O10—K6viii3.0404 (9)K7—O18iii2.7891 (10)
O11—K3viii2.6683 (9)K7—O11iii2.7995 (10)
O11—K7viii2.7995 (10)K7—O15xiv3.0928 (10)
O11—K6viii2.9867 (12)K7—O20iii3.0973 (10)
O11—K8viii3.0747 (10)K8—O24xv2.5736 (9)
O12—Al2vi1.7472 (10)K8—O13xiv2.6179 (9)
O12—K8viii2.9492 (10)K8—O16xv2.7225 (10)
O12—K9vi3.0206 (9)K8—O10iii2.7834 (11)
O13—K8ix2.6179 (9)K8—O16xiv2.8730 (10)
O13—K7ix2.6369 (9)K8—O12iii2.9492 (10)
O13—K6x2.6690 (10)K8—O11iii3.0747 (10)
O14—K6x2.8235 (10)K9—O22i2.6965 (9)
O15—Al1ii1.7671 (9)K9—O15xiv2.9782 (9)
O15—K9ix2.9782 (9)K9—O12i3.0206 (9)
O15—K7ix3.0928 (10)K9—O23i3.3094 (11)
O2—P1—O3114.74 (6)O6—K4—O1vii95.55 (4)
O2—P1—O4108.96 (6)O19xiii—K4—O1vii162.75 (3)
O3—P1—O4109.93 (5)O19iv—K4—O4vii130.06 (3)
O2—P1—O1110.62 (5)O5iii—K4—O4vii63.12 (3)
O3—P1—O1109.99 (5)O6—K4—O4vii112.61 (3)
O4—P1—O1101.83 (5)O19xiii—K4—O4vii138.74 (2)
O5—P2—O6115.50 (5)O1vii—K4—O4vii47.89 (2)
O5—P2—O7110.19 (5)O6vii—K5—O17xiii124.71 (3)
O6—P2—O7108.14 (5)O6vii—K5—O9iii107.49 (3)
O5—P2—O8110.34 (5)O17xiii—K5—O9iii76.28 (3)
O6—P2—O8108.08 (5)O6vii—K5—O20iii101.89 (3)
O7—P2—O8103.92 (5)O17xiii—K5—O20iii131.91 (3)
O9—P3—O11115.78 (5)O9iii—K5—O20iii79.22 (3)
O9—P3—O10111.44 (5)O6vii—K5—O18iii121.40 (3)
O11—P3—O10106.55 (4)O17xiii—K5—O18iii107.24 (3)
O9—P3—O12110.48 (5)O9iii—K5—O18iii109.57 (3)
O11—P3—O12109.75 (5)O20iii—K5—O18iii45.61 (2)
O10—P3—O12101.90 (5)O6vii—K5—O7104.90 (3)
O13—P4—O16114.83 (5)O17xiii—K5—O783.91 (3)
O13—P4—O14107.75 (5)O9iii—K5—O7147.55 (2)
O16—P4—O14110.03 (5)O20iii—K5—O796.03 (2)
O13—P4—O15109.38 (5)O18iii—K5—O752.43 (2)
O16—P4—O15109.88 (5)O6vii—K5—O8vii48.81 (2)
O14—P4—O15104.43 (4)O17xiii—K5—O8vii76.48 (3)
O19—P5—O17114.32 (6)O9iii—K5—O8vii90.66 (3)
O19—P5—O20110.19 (5)O20iii—K5—O8vii144.56 (2)
O17—P5—O20110.20 (5)O18iii—K5—O8vii159.77 (2)
O19—P5—O18110.88 (5)O7—K5—O8vii109.55 (3)
O17—P5—O18110.42 (5)O6vii—K5—O19iii75.39 (3)
O20—P5—O1899.89 (5)O17xiii—K5—O19iii149.41 (2)
O24—P6—O22116.61 (5)O9iii—K5—O19iii122.93 (3)
O24—P6—O23108.41 (4)O20iii—K5—O19iii46.16 (2)
O22—P6—O23109.19 (5)O18iii—K5—O19iii46.45 (2)
O24—P6—O21110.50 (5)O7—K5—O19iii67.55 (3)
O22—P6—O21108.33 (5)O8vii—K5—O19iii122.41 (2)
O23—P6—O21102.92 (4)O13x—K6—O22i86.84 (3)
O14—Al1—O10i111.38 (5)O13x—K6—O16xiv168.34 (2)
O14—Al1—O23i109.29 (4)O22i—K6—O16xiv104.31 (3)
O10i—Al1—O23i105.73 (4)O13x—K6—O24xiv112.32 (4)
O14—Al1—O15ii107.00 (5)O22i—K6—O24xiv112.38 (3)
O10i—Al1—O15ii110.15 (4)O16xiv—K6—O24xiv66.94 (4)
O23i—Al1—O15ii113.35 (5)O13x—K6—O14x53.63 (3)
O20i—Al2—O1107.57 (5)O22i—K6—O14x133.66 (3)
O20i—Al2—O21108.87 (4)O16xiv—K6—O14x117.48 (3)
O1—Al2—O21109.31 (4)O24xiv—K6—O14x70.39 (3)
O20i—Al2—O12i108.74 (4)O13x—K6—O11iii94.96 (3)
O1—Al2—O12i111.28 (4)O22i—K6—O11iii88.10 (3)
O21—Al2—O12i110.98 (4)O16xiv—K6—O11iii82.20 (3)
O4—Al3—O18iii110.83 (5)O24xiv—K6—O11iii146.01 (3)
O4—Al3—O8iv110.07 (4)O14x—K6—O11iii115.41 (3)
O18iii—Al3—O8iv108.12 (4)O13x—K6—O10iii69.86 (2)
O4—Al3—O7107.13 (5)O22i—K6—O10iii125.73 (3)
O18iii—Al3—O7105.30 (4)O16xiv—K6—O10iii100.27 (3)
O8iv—Al3—O7115.31 (4)O24xiv—K6—O10iii121.72 (2)
O2—K1—O9i112.37 (3)O14x—K6—O10iii67.14 (3)
O2—K1—O23i93.41 (4)O11iii—K6—O10iii48.47 (2)
O9i—K1—O23i77.18 (3)O13xiv—K7—O3123.45 (3)
O2—K1—O5v80.25 (4)O13xiv—K7—O18iii150.88 (2)
O9i—K1—O5v118.54 (3)O3—K7—O18iii84.97 (3)
O23i—K1—O5v164.26 (2)O13xiv—K7—O11iii78.51 (4)
O2—K1—O21i79.16 (3)O3—K7—O11iii93.31 (3)
O9i—K1—O21i127.19 (3)O18iii—K7—O11iii95.01 (4)
O23i—K1—O21i50.22 (2)O13xiv—K7—O996.66 (4)
O5v—K1—O21i114.15 (3)O3—K7—O993.94 (3)
O2—K1—O1i112.50 (3)O18iii—K7—O986.56 (4)
O9i—K1—O1i134.51 (3)O11iii—K7—O9172.69 (2)
O23i—K1—O1i93.09 (4)O13xiv—K7—O15xiv51.54 (2)
O5v—K1—O1i76.36 (4)O3—K7—O15xiv73.92 (3)
O21i—K1—O1i56.35 (3)O18iii—K7—O15xiv157.43 (2)
O2—K1—O4i137.20 (3)O11iii—K7—O15xiv94.11 (3)
O9i—K1—O4i101.05 (3)O9—K7—O15xiv87.00 (3)
O23i—K1—O4i120.30 (3)O13xiv—K7—O20iii103.94 (3)
O5v—K1—O4i60.10 (3)O3—K7—O20iii125.85 (3)
O21i—K1—O4i101.67 (3)O18iii—K7—O20iii47.93 (2)
O1i—K1—O4i46.26 (2)O11iii—K7—O20iii70.36 (3)
O2—K1—O3i154.13 (3)O9—K7—O20iii105.91 (3)
O9i—K1—O3i87.31 (3)O15xiv—K7—O20iii154.20 (2)
O23i—K1—O3i74.07 (4)O24xv—K8—O13xiv93.69 (3)
O5v—K1—O3i105.70 (4)O24xv—K8—O16xv69.23 (3)
O21i—K1—O3i75.45 (3)O13xiv—K8—O16xv151.96 (3)
O1i—K1—O3i47.66 (2)O24xv—K8—O10iii115.18 (3)
O4i—K1—O3i46.44 (3)O13xiv—K8—O10iii123.38 (3)
O5v—K2—O284.23 (3)O16xv—K8—O10iii84.54 (3)
O5v—K2—O6110.99 (3)O24xv—K8—O16xiv140.75 (3)
O2—K2—O6143.69 (3)O13xiv—K8—O16xiv54.79 (3)
O5v—K2—O17xiii125.94 (3)O16xv—K8—O16xiv127.063 (19)
O2—K2—O17xiii85.69 (3)O10iii—K8—O16xiv102.63 (2)
O6—K2—O17xiii108.13 (3)O24xv—K8—O12iii75.02 (3)
O5v—K2—O7144.48 (3)O13xiv—K8—O12iii98.75 (3)
O2—K2—O794.94 (3)O16xv—K8—O12iii97.98 (3)
O6—K2—O753.24 (3)O10iii—K8—O12iii50.65 (3)
O17xiii—K2—O789.24 (3)O16xiv—K8—O12iii127.26 (2)
O5v—K2—O19xiii91.51 (3)O24xv—K8—O11iii118.61 (3)
O2—K2—O19xiii123.16 (3)O13xiv—K8—O11iii73.93 (3)
O6—K2—O19xiii90.25 (3)O16xv—K8—O11iii133.49 (3)
O17xiii—K2—O19xiii52.44 (3)O10iii—K8—O11iii49.66 (3)
O7—K2—O19xiii117.53 (3)O16xiv—K8—O11iii78.05 (3)
O17xiii—K3—O22i141.01 (3)O12iii—K8—O11iii49.56 (2)
O17xiii—K3—O11iii108.28 (3)O22i—K9—O388.63 (4)
O22i—K3—O11iii95.71 (3)O22i—K9—O24165.65 (3)
O17xiii—K3—O286.06 (3)O3—K9—O24105.39 (3)
O22i—K3—O296.21 (3)O22i—K9—O16101.07 (4)
O11iii—K3—O2138.28 (3)O3—K9—O16169.42 (3)
O17xiii—K3—O21i88.37 (3)O24—K9—O1664.73 (3)
O22i—K3—O21i54.13 (3)O22i—K9—O15xiv104.22 (3)
O11iii—K3—O21i137.29 (3)O3—K9—O15xiv75.10 (3)
O2—K3—O21i80.11 (3)O24—K9—O15xiv77.10 (3)
O17xiii—K3—O3124.84 (3)O16—K9—O15xiv98.19 (3)
O22i—K3—O384.42 (4)O22i—K9—O12i112.94 (3)
O11iii—K3—O389.56 (3)O3—K9—O12i87.10 (3)
O2—K3—O352.20 (3)O24—K9—O12i71.65 (3)
O21i—K3—O3113.19 (3)O16—K9—O12i92.90 (3)
O19iv—K4—O5iii95.09 (3)O15xiv—K9—O12i138.23 (3)
O19iv—K4—O685.91 (3)O22i—K9—O23i48.17 (2)
O5iii—K4—O6175.02 (3)O3—K9—O23i101.27 (3)
O19iv—K4—O19xiii80.50 (3)O24—K9—O23i129.23 (3)
O5iii—K4—O19xiii90.82 (4)O16—K9—O23i88.46 (3)
O6—K4—O19xiii94.15 (4)O15xiv—K9—O23i152.38 (2)
O19iv—K4—O1vii86.01 (3)O12i—K9—O23i67.43 (2)
O5iii—K4—O1vii79.67 (4)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x, −y, −z; (iii) x, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) −x+1, y−1/2, −z+1/2; (vi) x, −y+1/2, z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+3/2, z+1/2; (ix) −x, y−1/2, −z+1/2; (x) −x, −y+1, −z; (xi) x, y−1, z; (xii) x, y, z+1; (xiii) x, y, z−1; (xiv) −x, y+1/2, −z+1/2; (xv) x, y+1, z.

Table 1 Characterization of K—O coordination spheres; coordination number as well as minimal and maximal distances (Å) within the coordination spheres for each K atom are given.

atom Kcoord. numberK—O distances (Å)
K182.6202 (10)–3.2026 (12)
K272.5994 (9)–2.9721 (10)
K362.6337 (11)–2.9790 (11)
K462.7005 (10)–3.0451 (10)
K582.6787 (9)–3.3087 (12)
K672.6690 (10)–3.0404 (9)
K772.6369 (9)–3.0973 (10)
K872.5736 (9)–3.0747 (10)
K972.6965 (9)–3.3094 (11)

Table 2 Characterization of K—O coordination spheres; the minimal and maximal K—O distances (Å) for the terminal and bridging oxygens (there is only one bridging oxygen in the coordination spheres of K2, K3, and K8).

atom KK—Oterminal / K—Obridge distances (Å)
K12.6202 (12)–3.2027 (18) / 3.0287 (14)–3.1684 (16)
K22.5994 (12)–2.9722 (14) / 2.8588 (14)
K32.6337 (13)–2.9790 (14) / 2.8348 (13)
K42.7006 (13)–2.7762 (15) / 2.9576 (15)–3.0451 (13)
K52.6787 (11)–3.3088 (19) / 3.1012 (15)–3.2476 (15)
K62.6690 (14)–2.9869 (16) / 2.8236 (13)–3.0405 (13)
K72.6368 (12)–2.9005 (15) / 2.7891 (14)–3.0974 (13)
K82.5737 (12)–3.0747 (13) / 2.9491 (13)
K92.6965 (2)–2.8865 (13) / 2.9783 (12)–3.3095 (16)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2181).

References

  • Aguilo, M. & Wuensdregt, C. F. (1985). J. Cryst. Growth, 83, 549–559
  • Barone, J. P. & Nancollas, G. H. (1978). J. Dent. Res.57, 735–742. [PubMed]
  • Dickinson, M. R., Gloster, L. A. W., Hopps, N. W. & King, T. A. (1996). Opt. Commun.132, 275–278.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Masse, R. & Grenier, J. C. (1971). Bull. Soc. Fr. Mineral. Cristallogr.94, 437–439.
  • Nandini Devi, R. & Vidyasagar, K. (2000). Inorg. Chem.39, 2391–2396. [PubMed]
  • Ng, H. N. & Calvo, C. (1973). Can. J. Chem.51, 2613–2620.
  • Noor, J. W. & Dam, B. (1986). J. Cryst. Growth, 76, 243–250.
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography