PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1127.
Published online 2010 April 21. doi:  10.1107/S1600536810013346
PMCID: PMC2979130

6-Chloro-8-methyl-4H-3,1-benzoxazine-2,4(1H)-dione

Abstract

The two mol­ecules in the asymmetric unit of the title compound, C9H6ClNO3, are nearly planar, with r.m.s. deviations of 0.034 and 0.037 Å. The crystal structure is stabilized by two weak inter­molecular N—H(...)O inter­actions.

Related literature

For background to isatoic anhydrides, see: Miyamae (1996 [triangle]); Nawrot et al. (1997 [triangle]); Nawrot & Sprinz (1998 [triangle]); Deifel et al. (2010 [triangle]); Ren et al. (1996 [triangle]). For the preparation, see: Coppola (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1127-scheme1.jpg

Experimental

Crystal data

  • C9H6ClNO3
  • M r = 211.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1127-efi1.jpg
  • a = 8.3019 (12) Å
  • b = 13.1322 (18) Å
  • c = 15.742 (2) Å
  • β = 99.675 (9)°
  • V = 1691.8 (4) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 3.85 mm−1
  • T = 173 K
  • 0.22 × 0.22 × 0.15 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: numerical (NUMABS; Higashi, 1999 [triangle]) T min = 0.485, T max = 0.596
  • 11524 measured reflections
  • 3050 independent reflections
  • 2280 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.107
  • S = 1.01
  • 3050 reflections
  • 256 parameters
  • H-atom parameters constrained
  • Δρmax = 0.49 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013346/vm2022sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013346/vm2022Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Northeast Forestry University Youth Research Fund (09054).

supplementary crystallographic information

Comment

Isatoic anhydride derivatives are generally used as intermediates in the synthesis of heterocyclic compounds, such as agricultural chemicals, medicines, pharmaceuticals, quinazolinones, quinazolones, benzimidazolones, phthalimides, pyrroloquinazolones, quinazolinediones and in the fluorescent labeling of mRNAand tRNA (Miyamae, 1996; Nawrot et al., 1997; Nawrot et al., 1998; Deifel et al., 2010; Ren et al., 1996).

The title compound is a nearly planar molecule (Fig. 1). The bond distances are consistent with an aromatic system. There are two molecules in the asymmetric unit of the title compound. The molecular structure is stabilized by two weak intermolecular N–H···O interactions resulting in the formation of dimers.

Experimental

The isatoic anhydride was prepared by reaction of anthranilic acid with triphosgene in good yield (Coppola, 1980). The title compound (0.2 g) was dissolved in ethanol (50 ml) at room temperature. Colourless blocks of (I) were obtained through slow evaporation after two weeks.

Refinement

The H atoms were placed at calculated positions, with C—H = 0.93–0.98 Å, and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids and atom-numbering scheme.

Crystal data

C9H6ClNO3F(000) = 864
Mr = 211.60Dx = 1.661 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54186 Å
Hall symbol: -P 2ynCell parameters from 687 reflections
a = 8.3019 (12) Åθ = 3.1–68.2°
b = 13.1322 (18) ŵ = 3.85 mm1
c = 15.742 (2) ÅT = 173 K
β = 99.675 (9)°Plate, colorless
V = 1691.8 (4) Å30.22 × 0.22 × 0.15 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer3050 independent reflections
Radiation source: rotating anode2280 reflections with I > 2σ(I)
graphiteRint = 0.054
ω scansθmax = 68.2°, θmin = 4.4°
Absorption correction: numerical (NUMABS; Higashi, 1999)h = −10→9
Tmin = 0.485, Tmax = 0.596k = −15→15
11524 measured reflectionsl = −18→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.107w = 1/[σ2(Fo2) + (0.0569P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3050 reflectionsΔρmax = 0.49 e Å3
256 parametersΔρmin = −0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.74255 (7)0.37308 (4)0.31233 (4)0.03722 (19)
Cl20.15868 (6)0.36329 (4)0.20423 (3)0.03096 (18)
O10.15834 (17)0.35341 (10)0.42141 (10)0.0352 (4)
O20.21462 (17)0.36049 (9)0.56311 (10)0.0292 (4)
O30.25940 (17)0.36009 (10)0.70532 (10)0.0343 (4)
O40.74385 (17)0.36875 (10)0.09544 (10)0.0325 (4)
O50.68671 (17)0.37641 (10)−0.04621 (9)0.0281 (4)
O60.64195 (17)0.37865 (10)−0.18829 (10)0.0342 (4)
N10.4795 (2)0.37337 (11)0.63750 (11)0.0263 (4)
H1A0.54720.37890.68670.032*
N20.4212 (2)0.38050 (11)−0.12090 (11)0.0248 (4)
H2A0.35310.3836−0.17010.030*
C10.6645 (3)0.37491 (14)0.40801 (14)0.0287 (5)
C20.4986 (3)0.36648 (13)0.40569 (14)0.0265 (5)
H2B0.42610.36070.35240.032*
C30.4396 (3)0.36668 (13)0.48353 (14)0.0251 (5)
C40.5457 (3)0.37476 (13)0.56177 (13)0.0232 (5)
C50.7156 (3)0.38488 (13)0.56459 (14)0.0255 (5)
C60.7711 (3)0.38478 (13)0.48592 (14)0.0270 (5)
H6A0.88490.39160.48540.032*
C70.2637 (3)0.35950 (14)0.48294 (14)0.0262 (5)
C80.3186 (3)0.36409 (14)0.64046 (15)0.0277 (5)
C90.8305 (2)0.39789 (15)0.64787 (13)0.0297 (5)
H9A0.94270.40320.63650.045*
H9B0.82170.33900.68510.045*
H9C0.80230.46000.67660.045*
C100.2366 (3)0.37177 (13)0.10859 (14)0.0260 (5)
C110.4028 (2)0.36882 (13)0.11139 (14)0.0250 (5)
H11A0.47540.36410.16480.030*
C120.4623 (3)0.37296 (13)0.03310 (14)0.0245 (5)
C130.3552 (3)0.37864 (12)−0.04491 (13)0.0226 (5)
C140.1853 (2)0.38394 (14)−0.04755 (14)0.0248 (5)
C150.1296 (3)0.38043 (12)0.03084 (14)0.0249 (5)
H15A0.01550.38410.03130.030*
C160.6380 (3)0.37193 (13)0.03436 (14)0.0252 (5)
C170.5828 (3)0.37785 (14)−0.12356 (15)0.0278 (5)
C180.0708 (2)0.39453 (15)−0.13148 (14)0.0299 (5)
H18A−0.04210.3958−0.12080.045*
H18B0.08520.3367−0.16880.045*
H18C0.09440.4580−0.15970.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0344 (3)0.0529 (4)0.0255 (3)0.0024 (2)0.0083 (3)−0.0006 (2)
Cl20.0292 (3)0.0399 (3)0.0246 (3)−0.0011 (2)0.0072 (2)0.0001 (2)
O10.0251 (8)0.0467 (9)0.0321 (10)−0.0004 (7)−0.0004 (8)0.0003 (7)
O20.0202 (7)0.0424 (9)0.0244 (9)−0.0006 (6)0.0020 (7)0.0030 (6)
O30.0242 (8)0.0540 (10)0.0252 (9)−0.0013 (7)0.0053 (7)0.0004 (7)
O40.0222 (8)0.0449 (9)0.0287 (9)0.0000 (6)−0.0012 (8)0.0026 (7)
O50.0178 (7)0.0407 (8)0.0252 (9)−0.0001 (6)0.0019 (7)−0.0038 (6)
O60.0220 (8)0.0575 (10)0.0240 (9)−0.0022 (6)0.0062 (7)−0.0037 (7)
N10.0210 (9)0.0348 (10)0.0225 (10)−0.0011 (7)0.0016 (8)−0.0008 (7)
N20.0177 (9)0.0349 (9)0.0209 (10)−0.0006 (7)0.0007 (8)0.0000 (7)
C10.0324 (12)0.0304 (11)0.0236 (13)0.0030 (9)0.0059 (10)0.0010 (8)
C20.0259 (11)0.0275 (11)0.0250 (12)0.0030 (8)0.0007 (10)0.0010 (8)
C30.0236 (11)0.0251 (10)0.0257 (12)0.0007 (8)0.0015 (10)0.0004 (8)
C40.0228 (11)0.0213 (10)0.0249 (12)0.0001 (7)0.0025 (10)0.0008 (8)
C50.0244 (11)0.0245 (10)0.0268 (13)0.0015 (8)0.0021 (10)−0.0015 (8)
C60.0222 (11)0.0300 (11)0.0289 (13)0.0005 (8)0.0047 (10)−0.0005 (9)
C70.0232 (11)0.0278 (11)0.0258 (13)−0.0001 (8)−0.0015 (10)0.0006 (8)
C80.0247 (11)0.0280 (11)0.0292 (13)0.0015 (8)0.0009 (10)0.0037 (9)
C90.0222 (11)0.0388 (12)0.0272 (13)−0.0023 (9)0.0019 (10)−0.0019 (9)
C100.0275 (11)0.0256 (10)0.0253 (13)−0.0024 (8)0.0060 (10)−0.0020 (8)
C110.0230 (11)0.0282 (11)0.0230 (12)0.0003 (8)0.0012 (10)0.0004 (8)
C120.0206 (10)0.0240 (10)0.0284 (13)−0.0015 (8)0.0028 (10)−0.0013 (8)
C130.0231 (11)0.0223 (10)0.0224 (12)−0.0011 (8)0.0037 (10)0.0001 (8)
C140.0206 (10)0.0240 (10)0.0288 (13)−0.0004 (8)0.0011 (10)−0.0003 (8)
C150.0197 (10)0.0259 (10)0.0286 (13)−0.0006 (8)0.0030 (9)−0.0007 (8)
C160.0219 (11)0.0261 (10)0.0265 (13)0.0006 (8)0.0012 (10)−0.0006 (8)
C170.0250 (11)0.0300 (11)0.0277 (13)−0.0018 (8)0.0022 (10)−0.0039 (9)
C180.0205 (11)0.0381 (12)0.0304 (13)0.0020 (9)0.0020 (10)0.0008 (9)

Geometric parameters (Å, °)

Cl1—C11.737 (2)C3—C71.462 (3)
Cl2—C101.739 (2)C4—C51.410 (3)
O1—C71.194 (2)C5—C61.392 (3)
O2—C81.370 (3)C5—C91.496 (3)
O2—C71.390 (3)C6—H6A0.9500
O3—C81.206 (2)C9—H9A0.9800
O4—C161.189 (3)C9—H9B0.9800
O5—C171.369 (3)C9—H9C0.9800
O5—C161.396 (3)C10—C111.374 (3)
O6—C171.203 (2)C10—C151.391 (3)
N1—C81.350 (3)C11—C121.403 (3)
N1—C41.394 (3)C11—H11A0.9500
N1—H1A0.8800C12—C131.392 (3)
N2—C171.349 (3)C12—C161.456 (3)
N2—C131.397 (3)C13—C141.406 (3)
N2—H2A0.8800C14—C151.389 (3)
C1—C21.376 (3)C14—C181.499 (3)
C1—C61.393 (3)C15—H15A0.9500
C2—C31.394 (3)C18—H18A0.9800
C2—H2B0.9500C18—H18B0.9800
C3—C41.393 (3)C18—H18C0.9800
C8—O2—C7124.77 (17)H9A—C9—H9B109.5
C17—O5—C16124.97 (17)C5—C9—H9C109.5
C8—N1—C4124.42 (19)H9A—C9—H9C109.5
C8—N1—H1A117.8H9B—C9—H9C109.5
C4—N1—H1A117.8C11—C10—C15121.3 (2)
C17—N2—C13124.13 (18)C11—C10—Cl2119.22 (17)
C17—N2—H2A117.9C15—C10—Cl2119.45 (17)
C13—N2—H2A117.9C10—C11—C12118.0 (2)
C2—C1—C6121.1 (2)C10—C11—H11A121.0
C2—C1—Cl1119.58 (18)C12—C11—H11A121.0
C6—C1—Cl1119.34 (17)C13—C12—C11120.68 (19)
C1—C2—C3118.3 (2)C13—C12—C16120.2 (2)
C1—C2—H2B120.8C11—C12—C16119.14 (19)
C3—C2—H2B120.8C12—C13—N2118.17 (19)
C4—C3—C2120.9 (2)C12—C13—C14121.2 (2)
C4—C3—C7119.6 (2)N2—C13—C14120.65 (19)
C2—C3—C7119.51 (19)C15—C14—C13116.99 (19)
C3—C4—N1118.26 (19)C15—C14—C18121.99 (19)
C3—C4—C5121.1 (2)C13—C14—C18121.01 (19)
N1—C4—C5120.68 (19)C14—C15—C10121.7 (2)
C6—C5—C4116.81 (19)C14—C15—H15A119.1
C6—C5—C9121.48 (19)C10—C15—H15A119.1
C4—C5—C9121.69 (19)O4—C16—O5116.66 (19)
C5—C6—C1121.8 (2)O4—C16—C12127.9 (2)
C5—C6—H6A119.1O5—C16—C12115.46 (18)
C1—C6—H6A119.1O6—C17—N2125.1 (2)
O1—C7—O2116.79 (19)O6—C17—O5117.84 (19)
O1—C7—C3127.2 (2)N2—C17—O5117.00 (19)
O2—C7—C3116.02 (18)C14—C18—H18A109.5
O3—C8—N1125.4 (2)C14—C18—H18B109.5
O3—C8—O2117.74 (19)H18A—C18—H18B109.5
N1—C8—O2116.9 (2)C14—C18—H18C109.5
C5—C9—H9A109.5H18A—C18—H18C109.5
C5—C9—H9B109.5H18B—C18—H18C109.5
C6—C1—C2—C3−0.8 (3)C15—C10—C11—C12−1.1 (3)
Cl1—C1—C2—C3179.08 (13)Cl2—C10—C11—C12178.26 (12)
C1—C2—C3—C4−0.3 (3)C10—C11—C12—C13−0.7 (3)
C1—C2—C3—C7179.00 (16)C10—C11—C12—C16178.83 (16)
C2—C3—C4—N1−179.29 (15)C11—C12—C13—N2−178.74 (15)
C7—C3—C4—N11.4 (2)C16—C12—C13—N21.7 (2)
C2—C3—C4—C51.2 (3)C11—C12—C13—C142.2 (3)
C7—C3—C4—C5−178.09 (17)C16—C12—C13—C14−177.37 (16)
C8—N1—C4—C30.4 (3)C17—N2—C13—C12−0.5 (3)
C8—N1—C4—C5179.93 (17)C17—N2—C13—C14178.58 (16)
C3—C4—C5—C6−0.9 (3)C12—C13—C14—C15−1.7 (3)
N1—C4—C5—C6179.55 (15)N2—C13—C14—C15179.27 (15)
C3—C4—C5—C9177.47 (16)C12—C13—C14—C18177.37 (16)
N1—C4—C5—C9−2.0 (3)N2—C13—C14—C18−1.7 (3)
C4—C5—C6—C1−0.2 (3)C13—C14—C15—C10−0.2 (3)
C9—C5—C6—C1−178.58 (16)C18—C14—C15—C10−179.25 (16)
C2—C1—C6—C51.1 (3)C11—C10—C15—C141.6 (3)
Cl1—C1—C6—C5−178.84 (14)Cl2—C10—C15—C14−177.76 (13)
C8—O2—C7—O1178.00 (15)C17—O5—C16—O4178.23 (15)
C8—O2—C7—C3−2.3 (2)C17—O5—C16—C12−2.5 (2)
C4—C3—C7—O1179.09 (18)C13—C12—C16—O4178.89 (18)
C2—C3—C7—O1−0.2 (3)C11—C12—C16—O4−0.7 (3)
C4—C3—C7—O2−0.5 (2)C13—C12—C16—O5−0.3 (2)
C2—C3—C7—O2−179.82 (15)C11—C12—C16—O5−179.91 (14)
C4—N1—C8—O3177.97 (17)C13—N2—C17—O6179.44 (17)
C4—N1—C8—O2−3.1 (3)C13—N2—C17—O5−2.1 (3)
C7—O2—C8—O3−176.85 (16)C16—O5—C17—O6−177.76 (16)
C7—O2—C8—N14.1 (2)C16—O5—C17—N23.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.881.992.846 (3)163
N2—H2A···O3ii0.882.012.850 (2)160

Symmetry codes: (i) x, y, z+1; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2022).

References

  • Coppola, G. M. (1980). Synthesis, 7, 505–536.
  • Deifel, N. P., Cherney, E., Hunt, D. A. & Chan, B. C. (2010). Acta Cryst E66, o665. [PMC free article] [PubMed]
  • Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  • Miyamae, T. (1996). Microbiol. Immunol 40, 761–766. [PubMed]
  • Nawrot, B., Milius, W., Ejchart, A., Limmer, St. & Sprinz, M. (1997). Nucleic Acids Res 25, 948–954. [PMC free article] [PubMed]
  • Nawrot, B. & Sprinz, M. (1998). Nucleosides Nucleotides Nucleic Acids, 17, 815–829. [PubMed]
  • Ren, J. & Goss, D. J. (1996). Nucleic Acids Res 24, 3629–3634. [PMC free article] [PubMed]
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography