PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m517.
Published online 2010 April 10. doi:  10.1107/S1600536810012626
PMCID: PMC2979128

Diaqua­bis{5-carboxy-2-[(1H-1,2,4-triazol-1-yl)­meth­yl]-1H-imidazole-4-carboxyl­ato}­manganese(II)

Abstract

In the title compound, [Mn(C8H6N5O4)2(H2O)2], the MnII ion is situated on an inversion center and is six-coordinated by two N and two O atoms from two L ligands (HL = 2-[(1H-1,2,4-triazol-1-yl)meth­yl]-1H-imidazole-4,5-dicarboxylic acid) and two water mol­ecules in a distorted octa­hedral geometry. In ligand L, the imidazole and triazole rings form a dihedral angle of 74.25 (8)°. Mol­ecules are assembled into a three-dimensional structure via inter­molecular O—H(...)O, O—H(...)N and N—H(...)N hydrogen-bonds, and π–π inter­actions with a short distance of 3.665 (2) Å between the centroids of the imidazole and triazole rings of neighbouring mol­ecules.

Related literature

For related structures, see: Lee et al. (2005 [triangle]); Ouellette et al. (2007 [triangle]); Won et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m517-scheme1.jpg

Experimental

Crystal data

  • [Mn(C8H6N5O4)2(H2O)2]
  • M r = 563.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m517-efi1.jpg
  • a = 7.730 (2) Å
  • b = 14.498 (3) Å
  • c = 11.588 (4) Å
  • β = 125.70 (2)°
  • V = 1054.6 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.71 mm−1
  • T = 293 K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Rigaku Mercury CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 [triangle]) T min = 0.871, T max = 0.933
  • 11281 measured reflections
  • 2074 independent reflections
  • 1974 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.077
  • S = 1.05
  • 2074 reflections
  • 169 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012626/cv2709sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012626/cv2709Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was sponsored by the Natural Science Foundation of Henan Province (grant No. 200510469005).

supplementary crystallographic information

Comment

Multidentate ligands containing rich coordination sites (N and/or O donors) are often employed to produce polymeric networks with structural diversity owing to their various coordination modes (Lee et al., 2005; Ouellette et al., 2007; Won et al., 2007). As ligands with multiple coordination sites, 1,2,4-triazole and its derivatives have been shown to be good organic linkers in generation of structurally versatile metal-organic frameworks since it can bridge different metal centers to afford coordination polymers that exhibit extraordinary structural diversity and facile accessibility of functionalized materials. We selected a ligand containing 1,2,4-triazole, imidazole, and carboxylate groups, 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid, to study its coordination chemistry. As a result, we report herein the crystal structure of the title compound (I).

In (I), MnII ion located on an inversion center is six–coordinated by two imidazole nitrogen atoms (N4), two carboxylate group oxygen atoms (O1) from two ligands, and two water oxygen atoms (Fig. 1). The coordination bond lengths Mn—N and Mn—O are 2.248 (1), 2.186 (1) Å and 2.188 (2) Å, respectively. The coordination geometry around MnII is a distorted octahedron - the MnII coordination angles are in the range from 75.75 (6)° to 180.00 (1)°. Each L acts as a bidentate ligand.

In the crystal structure, the intra- and intermolecular hydrogen bonds (Table 1) and π–π interactions with short distance of 3.665 (2) Å between the centroids of imidazole and triazole rings from the neighbouring molecules consolidate the crystal packing.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. The compound [MnL2(H2O)2] was synthesized as follows: 2-[(1H-1,2,4-triazol-1-yl)methyl]-1H-imidazole-4,5-dicarboxylic acid (1.0 mmol) was added to 5 cm3 water and the resulting solution was adjusted pH to 7.0 by NaOH aqueous. Then MnCl2(0.5 mmol) was added to the above solution, and the mixture was stirred for 30 min and filtered. After one days, pink single crystals suitable for X-ray analysis were obtained. Analysis calculated (%) for C16H16MnN10O10: C 34.12, H 2.86, N 24.87; found (%): C 34.23, H 2.65, N 24.75.

Refinement

The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å for the triazole, 0.97 Å for the methylene H atoms, O—H = 0.79 Å for water molecule, 0.98 Å for carboxylic acid, and N—H = 0.86 Å for the imidazole, with Uiso(H) = 1.5Ueq(parent O-atom) and 1.2Ueq(parent N-atom and C-atom).

Figures

Fig. 1.
The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering [symmetry code: (A) - x - 1, - y, - z].

Crystal data

[Mn(C8H6N5O4)2(H2O)2]F(000) = 574
Mr = 563.33Dx = 1.774 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3276 reflections
a = 7.730 (2) Åθ = 2.6–30.8°
b = 14.498 (3) ŵ = 0.71 mm1
c = 11.588 (4) ÅT = 293 K
β = 125.70 (2)°Prism, pink
V = 1054.6 (5) Å30.20 × 0.15 × 0.10 mm
Z = 2

Data collection

Rigaku Mercury CCD area-detector diffractometer2074 independent reflections
Radiation source: fine-focus sealed tube1974 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2000)h = −9→9
Tmin = 0.871, Tmax = 0.933k = −17→17
11281 measured reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0245P)2 + 0.947P] where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn1−0.50000.00000.00000.02963 (14)
O1−0.2806 (2)0.11091 (10)0.13249 (15)0.0333 (4)
O2−0.0902 (2)0.17418 (10)0.34848 (15)0.0319 (3)
O3−0.0253 (2)0.14770 (10)0.58250 (15)0.0328 (4)
H3C−0.04910.15960.49080.049*
O4−0.1284 (2)0.04886 (11)0.67687 (15)0.0353 (4)
O5−0.7693 (3)0.08739 (13)−0.05545 (17)0.0516 (5)
H5B−0.75490.1335−0.01550.077*
H5C−0.87570.0886−0.13460.077*
N1−0.4778 (3)−0.24271 (11)0.21460 (17)0.0247 (4)
N2−0.3256 (3)−0.29594 (12)0.32424 (18)0.0316 (4)
N3−0.3707 (3)−0.33526 (13)0.12013 (18)0.0318 (4)
N4−0.4235 (3)−0.02708 (11)0.21633 (16)0.0229 (4)
N5−0.3572 (3)−0.05521 (11)0.42541 (16)0.0221 (4)
H5A−0.3594−0.08200.49070.026*
C1−0.2671 (4)−0.34974 (16)0.2612 (2)0.0337 (5)
H1A−0.1620−0.39450.31010.040*
C2−0.5007 (4)−0.26688 (14)0.0956 (2)0.0290 (5)
H2A−0.5952−0.23940.00740.035*
C3−0.5880 (3)−0.16935 (14)0.2336 (2)0.0283 (5)
H3A−0.6208−0.19020.29840.034*
H3B−0.7215−0.15590.14300.034*
C4−0.4575 (3)−0.08370 (13)0.2908 (2)0.0219 (4)
C5−0.2913 (3)0.04042 (13)0.30983 (19)0.0208 (4)
C6−0.2149 (3)0.11379 (14)0.2602 (2)0.0249 (4)
C7−0.2507 (3)0.02413 (13)0.44029 (19)0.0212 (4)
C8−0.1284 (3)0.07527 (14)0.5765 (2)0.0252 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0324 (3)0.0372 (3)0.0167 (2)−0.0015 (2)0.0129 (2)0.00040 (18)
O10.0379 (9)0.0365 (9)0.0233 (8)−0.0041 (7)0.0166 (7)0.0066 (6)
O20.0335 (8)0.0273 (8)0.0316 (8)−0.0063 (6)0.0172 (7)−0.0006 (6)
O30.0347 (8)0.0307 (8)0.0279 (8)−0.0076 (7)0.0153 (7)−0.0074 (6)
O40.0384 (9)0.0452 (10)0.0207 (8)−0.0050 (7)0.0162 (7)−0.0059 (7)
O50.0416 (10)0.0684 (13)0.0262 (9)0.0132 (9)0.0093 (8)−0.0137 (8)
N10.0317 (9)0.0216 (9)0.0235 (9)−0.0040 (7)0.0176 (8)−0.0033 (7)
N20.0376 (10)0.0316 (10)0.0224 (9)−0.0003 (8)0.0156 (8)0.0009 (7)
N30.0410 (11)0.0312 (10)0.0293 (10)−0.0014 (8)0.0240 (9)−0.0032 (8)
N40.0250 (8)0.0240 (9)0.0175 (8)−0.0010 (7)0.0111 (7)−0.0016 (6)
N50.0268 (9)0.0229 (9)0.0185 (8)0.0000 (7)0.0144 (7)0.0004 (6)
C10.0351 (12)0.0332 (12)0.0300 (12)0.0032 (10)0.0174 (10)0.0006 (9)
C20.0410 (12)0.0249 (11)0.0227 (10)−0.0040 (9)0.0196 (10)−0.0022 (8)
C30.0330 (11)0.0243 (11)0.0332 (11)−0.0039 (9)0.0225 (10)−0.0057 (9)
C40.0230 (10)0.0213 (10)0.0217 (10)0.0002 (8)0.0133 (8)−0.0016 (8)
C50.0210 (9)0.0201 (9)0.0189 (9)0.0021 (8)0.0102 (8)0.0004 (8)
C60.0234 (10)0.0238 (10)0.0240 (10)0.0033 (8)0.0119 (9)0.0046 (8)
C70.0207 (9)0.0214 (10)0.0188 (9)0.0019 (8)0.0100 (8)0.0004 (7)
C80.0227 (10)0.0274 (11)0.0211 (10)0.0034 (8)0.0102 (8)−0.0025 (8)

Geometric parameters (Å, °)

Mn1—O5i2.1886 (17)N2—C11.316 (3)
Mn1—O52.1886 (17)N3—C21.319 (3)
Mn1—O1i2.1862 (16)N3—C11.353 (3)
Mn1—O12.1862 (16)N4—C41.324 (2)
Mn1—N42.2489 (18)N4—C51.373 (2)
Mn1—N4i2.2489 (18)N5—C41.339 (2)
O1—C61.254 (2)N5—C71.366 (2)
O2—C61.262 (2)N5—H5A0.8600
O3—C81.296 (3)C1—H1A0.9300
O3—H3C0.9817C2—H2A0.9300
O4—C81.224 (2)C3—C41.489 (3)
O5—H5B0.7826C3—H3A0.9700
O5—H5C0.7987C3—H3B0.9700
N1—C21.331 (3)C5—C71.373 (3)
N1—N21.360 (2)C5—C61.486 (3)
N1—C31.458 (3)C7—C81.481 (3)
O5i—Mn1—O5180.00 (12)C4—N5—H5A126.2
O5i—Mn1—O1i89.74 (7)C7—N5—H5A126.2
O5—Mn1—O1i90.26 (7)N2—C1—N3115.2 (2)
O5i—Mn1—O190.26 (7)N2—C1—H1A122.4
O5—Mn1—O189.74 (7)N3—C1—H1A122.4
O1i—Mn1—O1180.00 (10)N3—C2—N1110.49 (19)
O5i—Mn1—N489.15 (6)N3—C2—H2A124.8
O5—Mn1—N490.85 (6)N1—C2—H2A124.8
O1i—Mn1—N4104.25 (6)N1—C3—C4111.81 (16)
O1—Mn1—N475.75 (6)N1—C3—H3A109.3
O5i—Mn1—N4i90.85 (6)C4—C3—H3A109.3
O5—Mn1—N4i89.15 (6)N1—C3—H3B109.3
O1i—Mn1—N4i75.75 (6)C4—C3—H3B109.3
O1—Mn1—N4i104.25 (6)H3A—C3—H3B107.9
N4—Mn1—N4i180.00 (11)N4—C4—N5111.56 (17)
C6—O1—Mn1117.87 (13)N4—C4—C3124.59 (17)
C8—O3—H3C111.3N5—C4—C3123.85 (18)
Mn1—O5—H5B122.5N4—C5—C7109.45 (17)
Mn1—O5—H5C121.0N4—C5—C6119.06 (16)
H5B—O5—H5C110.9C7—C5—C6131.47 (18)
C2—N1—N2109.77 (17)O1—C6—O2124.89 (19)
C2—N1—C3127.77 (18)O1—C6—C5117.01 (18)
N2—N1—C3122.43 (16)O2—C6—C5118.10 (17)
C1—N2—N1102.01 (17)N5—C7—C5105.79 (16)
C2—N3—C1102.53 (18)N5—C7—C8121.25 (17)
C4—N4—C5105.50 (15)C5—C7—C8132.93 (18)
C4—N4—Mn1144.26 (13)O4—C8—O3122.92 (18)
C5—N4—Mn1110.24 (12)O4—C8—C7120.16 (19)
C4—N5—C7107.68 (16)O3—C8—C7116.91 (18)
O5i—Mn1—O1—C6−90.63 (15)C5—N4—C4—C3−178.15 (18)
O5—Mn1—O1—C689.37 (15)Mn1—N4—C4—C32.4 (4)
O1i—Mn1—O1—C6178 (100)C7—N5—C4—N4−0.3 (2)
N4—Mn1—O1—C6−1.57 (14)C7—N5—C4—C3178.78 (18)
N4i—Mn1—O1—C6178.43 (14)N1—C3—C4—N473.8 (2)
C2—N1—N2—C1−0.1 (2)N1—C3—C4—N5−105.2 (2)
C3—N1—N2—C1−178.39 (18)C4—N4—C5—C7−1.2 (2)
O5i—Mn1—N4—C4−87.9 (2)Mn1—N4—C5—C7178.46 (12)
O5—Mn1—N4—C492.1 (2)C4—N4—C5—C6177.62 (17)
O1i—Mn1—N4—C41.6 (2)Mn1—N4—C5—C6−2.7 (2)
O1—Mn1—N4—C4−178.4 (2)Mn1—O1—C6—O2−179.15 (15)
N4i—Mn1—N4—C4171 (100)Mn1—O1—C6—C50.6 (2)
O5i—Mn1—N4—C592.68 (13)N4—C5—C6—O11.6 (3)
O5—Mn1—N4—C5−87.32 (13)C7—C5—C6—O1−179.9 (2)
O1i—Mn1—N4—C5−177.81 (12)N4—C5—C6—O2−178.64 (17)
O1—Mn1—N4—C52.19 (12)C7—C5—C6—O2−0.1 (3)
N4i—Mn1—N4—C5−9(100)C4—N5—C7—C5−0.4 (2)
N1—N2—C1—N3−0.3 (2)C4—N5—C7—C8177.95 (17)
C2—N3—C1—N20.6 (3)N4—C5—C7—N51.0 (2)
C1—N3—C2—N1−0.7 (2)C6—C5—C7—N5−177.59 (19)
N2—N1—C2—N30.6 (2)N4—C5—C7—C8−177.1 (2)
C3—N1—C2—N3178.69 (18)C6—C5—C7—C84.3 (4)
C2—N1—C3—C4−97.8 (2)N5—C7—C8—O4−3.0 (3)
N2—N1—C3—C480.2 (2)C5—C7—C8—O4174.9 (2)
C5—N4—C4—N50.9 (2)N5—C7—C8—O3177.23 (17)
Mn1—N4—C4—N5−178.52 (16)C5—C7—C8—O3−4.9 (3)

Symmetry codes: (i) −x−1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3C···O20.981.502.483 (2)178
O5—H5B···N2ii0.782.182.878 (2)149
O5—H5C···O4iii0.801.982.755 (2)162
N5—H5A···N3iv0.861.962.811 (2)169

Symmetry codes: (ii) −x−1, y+1/2, −z+1/2; (iii) x−1, y, z−1; (iv) x, −y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2709).

References

  • Lee, E. Y., Jang, S. Y. & Suh, M. P. (2005). J. Am. Chem. Soc.127, 6374–6381. [PubMed]
  • Ouellette, W., Hudson, B. & Zubieta, J. (2007). Inorg. Chem.46, 4887–4904. [PubMed]
  • Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Won, T. J., Clegg, J. K., Lindoy, L. F. & McMurtrie, J. C. (2007). Cryst. Growth Des.7, 972–979.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography