PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1154–o1155.
Published online 2010 April 24. doi:  10.1107/S1600536810014273
PMCID: PMC2979122

6-Methyl­pyridine-2(1H)-thione

Abstract

There are two unique mol­ecules in the asymmetric unit of the title pyridine­thione derivative, C6H7NS, each of which adopts the thione rather than the mercaptan form. The rings in both mol­ecules are essentially planar, with maximum deviations from the least-squares planes through all non-H atoms of 0.021 (2) and 0.017 (2) Å. In the crystal structure, the mol­ecules form centrosymmetric cyclic dimers through inter­molecular N—H(...)S hydrogen bonds. Additional C—H(meth­yl)(...)S inter­actions generate a three-dimensional network.

Related literature

For the synthesis of 2-mercaptopyridines, see: Thirtle (1946 [triangle]). For background to the applications of organic sulfur-containing compounds, see: Cui et al. (2009 [triangle]); Saadat et al. (2004 [triangle]); Qian et al. (2007 [triangle]). For metal complexes of 2-mercapto pyridine N-oxide and 6-methyl substituted derivatives, see: Hamaguchi et al. (2007 [triangle]); Chunchuryukin et al. (2006 [triangle]); Cotton et al. (1978 [triangle]); West et al. (1998 [triangle]); Fielding et al. (1997 [triangle]); Berardini et al. (1997 [triangle]); Tylicki et al. (1995 [triangle]); Hong et al. (1999 [triangle]); Cabeza et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1154-scheme1.jpg

Experimental

Crystal data

  • C6H7NS
  • M r = 125.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1154-efi1.jpg
  • a = 7.4608 (15) Å
  • b = 14.902 (3) Å
  • c = 11.665 (2) Å
  • β = 94.85 (3)°
  • V = 1292.3 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 295 K
  • 0.33 × 0.33 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.880, T max = 0.926
  • 12472 measured reflections
  • 2944 independent reflections
  • 2088 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.148
  • S = 1.12
  • 2944 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014273/sj2766sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014273/sj2766Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Critical Projects in Science and Technology Department of Zhejiang Province (No. 2007 C21113), the Cultivation Program of Young and Middle-aged Academic Leaders in Zhejiang Higher Education Institutions, the Natural Science Foundation of Ningbo City (No. 2009 A610047) and the K. C. Wong Magna Fund of Ningbo University for financial support.

supplementary crystallographic information

Comment

Organic sulfur-containing compounds have been frequently encountered or used in chemical industry (Cui et al., 2009), life science (Saadat et al., 2004) and pharmacy (Qian et al., 2007). Some of them have found their applications in crystal engineering. 2-mercaptopyridine, its 6-methyl substituted and N-oxide derivatives have exhibited rich coordination motifs. They can serve as monodentate (Hamaguchi et al., 2007; Chunchuryukin et al., 2006), bidentate (Cotton et al., 1978; West et al., 1998; Fielding et al., 1997; Berardini et al., 1997), and bridging (Tylicki et al., 1995; Hong, et al., 1999; Cabeza, et al., 2007) ligands to coordinate metals. Though syntheses and crystal structures of these metal complexes have been reported, the crystal structure of 2-mercapto-6-methylpyridine itself has not been yet reported. Here we report its crystal structure and packing pattern.

A perspective view of the title compound is shown in Fig. 1. The C—S bond lengths were 1.694 (3) and 1.700 (2) Å, shorter than those in the above-mentioned metal complexes (typically 1.740 Å). This clearly indicates that the neutral title compound in solid state exists as a pyridinethione, while in metal complexes it ligates to metal centers as a pyridinethiolate anion. As shown in Fig. 2, adjacent two molecules are linked by intermolecular N–H···S interactions, forming a cyclic dimer.

Experimental

6-methylpyridine-2(1H)-thione was synthesized by a literature method (Thirtle 1946). X-ray quality single crystals were grown from ethyl acetate and petroleum ether (1/10, v/v).

Refinement

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, the C–H bond lengths are 0.93 or 0.96 [Uiso(H) = 1.2 Ueq(C)] or [Uiso(H) = 1.5 Ueq(C)] for the methyl group, H atoms bonded to N atoms were placed in geometrically calculated positions and were also refined as riding [Uiso(H) = 1.2 Ueq(N)]. .

Figures

Fig. 1.
A perspective view of the title compound. Displacement ellipsoids are drawn at the 45% probability level.
Fig. 2.
Part of the packing of the title compound showing the formation of centrosymmetric dimers.

Crystal data

C6H7NSF(000) = 528
Mr = 125.19Dx = 1.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12782 reflections
a = 7.4608 (15) Åθ = 3.1–27.4°
b = 14.902 (3) ŵ = 0.39 mm1
c = 11.665 (2) ÅT = 295 K
β = 94.85 (3)°Block, yellow
V = 1292.3 (4) Å30.33 × 0.33 × 0.20 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer2944 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
graphiteRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 27.4°, θmin = 3.1°
ω scansh = −9→9
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −19→19
Tmin = 0.880, Tmax = 0.926l = −15→15
12472 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.12w = 1/[σ2(Fo2) + (0.0738P)2 + 0.3029P] where P = (Fo2 + 2Fc2)/3
2944 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.52754 (9)0.10281 (4)0.87258 (5)0.0561 (2)
S20.90012 (12)0.13575 (4)0.50014 (6)0.0743 (3)
N10.5873 (2)−0.07318 (12)0.85963 (15)0.0470 (4)
H1A0.5725−0.07230.93190.056*
N20.9262 (2)0.02468 (12)0.32400 (15)0.0488 (4)
H2A0.9555−0.01390.37710.059*
C10.6385 (5)−0.23318 (17)0.8905 (2)0.0746 (8)
H1B0.6160−0.21490.96690.112*
H1C0.7568−0.25870.89160.112*
H1D0.5509−0.27720.86330.112*
C20.6257 (3)−0.15375 (16)0.8125 (2)0.0541 (6)
C30.6503 (4)−0.15630 (18)0.6979 (2)0.0626 (6)
H3A0.6773−0.21020.66310.075*
C40.6350 (4)−0.0782 (2)0.6339 (2)0.0658 (7)
H4A0.6513−0.08000.55570.079*
C50.5961 (3)0.00181 (18)0.68372 (19)0.0593 (6)
H5A0.58680.05360.63920.071*
C60.5702 (3)0.00646 (15)0.80167 (18)0.0469 (5)
C70.9694 (4)−0.10058 (16)0.1955 (2)0.0609 (6)
H7A0.9963−0.12910.26870.091*
H7B1.0723−0.10420.15160.091*
H7C0.8693−0.13030.15460.091*
C80.9229 (3)−0.00394 (16)0.21353 (19)0.0499 (5)
C90.8776 (3)0.05620 (18)0.1275 (2)0.0590 (6)
H9A0.87440.03860.05080.071*
C100.8365 (4)0.14393 (18)0.1558 (2)0.0634 (7)
H10A0.80720.18530.09750.076*
C110.8384 (3)0.17037 (16)0.2678 (2)0.0581 (6)
H11A0.80740.22900.28490.070*
C120.8870 (3)0.10976 (15)0.3583 (2)0.0517 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0712 (4)0.0439 (3)0.0542 (4)0.0043 (3)0.0104 (3)0.0009 (2)
S20.1163 (7)0.0487 (4)0.0574 (4)0.0151 (4)0.0044 (4)−0.0032 (3)
N10.0524 (11)0.0453 (9)0.0438 (9)0.0011 (8)0.0076 (7)−0.0034 (8)
N20.0570 (11)0.0408 (9)0.0485 (10)0.0023 (8)0.0037 (8)0.0057 (8)
C10.108 (2)0.0494 (14)0.0673 (16)0.0165 (14)0.0117 (15)−0.0044 (12)
C20.0553 (14)0.0508 (13)0.0567 (13)0.0033 (10)0.0078 (10)−0.0093 (10)
C30.0703 (17)0.0623 (15)0.0561 (13)0.0028 (12)0.0102 (11)−0.0160 (12)
C40.0716 (17)0.0807 (18)0.0463 (12)−0.0021 (14)0.0114 (11)−0.0101 (12)
C50.0671 (16)0.0642 (15)0.0468 (12)−0.0044 (12)0.0059 (10)0.0038 (11)
C60.0424 (12)0.0508 (12)0.0475 (11)−0.0029 (9)0.0044 (8)−0.0009 (9)
C70.0648 (16)0.0570 (14)0.0614 (14)0.0012 (12)0.0087 (11)−0.0063 (11)
C80.0442 (12)0.0530 (12)0.0531 (12)−0.0045 (9)0.0073 (9)−0.0001 (10)
C90.0590 (15)0.0682 (16)0.0502 (12)−0.0028 (12)0.0057 (10)0.0077 (11)
C100.0646 (16)0.0623 (15)0.0619 (15)−0.0042 (12)−0.0030 (11)0.0229 (12)
C110.0595 (15)0.0423 (11)0.0716 (15)−0.0034 (10)−0.0006 (11)0.0120 (11)
C120.0534 (13)0.0418 (11)0.0601 (13)−0.0022 (10)0.0053 (10)0.0047 (10)

Geometric parameters (Å, °)

S1—C61.700 (2)C4—C51.368 (4)
S2—C121.694 (3)C4—H4A0.9300
N1—C21.361 (3)C5—C61.407 (3)
N1—C61.367 (3)C5—H5A0.9300
N1—H1A0.8600C7—C81.500 (3)
N2—C81.356 (3)C7—H7A0.9600
N2—C121.369 (3)C7—H7B0.9600
N2—H2A0.8600C7—H7C0.9600
C1—C21.491 (4)C8—C91.367 (3)
C1—H1B0.9600C9—C101.389 (4)
C1—H1C0.9600C9—H9A0.9300
C1—H1D0.9600C10—C111.363 (4)
C2—C31.366 (3)C10—H10A0.9300
C3—C41.383 (4)C11—C121.413 (3)
C3—H3A0.9300C11—H11A0.9300
C2—N1—C6125.47 (18)N1—C6—C5115.2 (2)
C2—N1—H1A117.3N1—C6—S1120.41 (15)
C6—N1—H1A117.3C5—C6—S1124.34 (19)
C8—N2—C12125.61 (19)C8—C7—H7A109.5
C8—N2—H2A117.2C8—C7—H7B109.5
C12—N2—H2A117.2H7A—C7—H7B109.5
C2—C1—H1B109.5C8—C7—H7C109.5
C2—C1—H1C109.5H7A—C7—H7C109.5
H1B—C1—H1C109.5H7B—C7—H7C109.5
C2—C1—H1D109.5N2—C8—C9118.4 (2)
H1B—C1—H1D109.5N2—C8—C7116.7 (2)
H1C—C1—H1D109.5C9—C8—C7124.9 (2)
N1—C2—C3118.1 (2)C8—C9—C10119.2 (2)
N1—C2—C1117.3 (2)C8—C9—H9A120.4
C3—C2—C1124.6 (2)C10—C9—H9A120.4
C2—C3—C4119.6 (2)C11—C10—C9121.0 (2)
C2—C3—H3A120.2C11—C10—H10A119.5
C4—C3—H3A120.2C9—C10—H10A119.5
C5—C4—C3121.0 (2)C10—C11—C12120.8 (2)
C5—C4—H4A119.5C10—C11—H11A119.6
C3—C4—H4A119.5C12—C11—H11A119.6
C4—C5—C6120.7 (2)N2—C12—C11114.9 (2)
C4—C5—H5A119.7N2—C12—S2120.08 (17)
C6—C5—H5A119.7C11—C12—S2125.00 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.503.3376 (19)165
N2—H2A···S2ii0.862.503.340 (2)166
C1—H1B···S1i0.962.793.678 (3)154
C7—H7A···S2ii0.962.743.639 (3)156

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2766).

References

  • Berardini, M., Lee, J., Freedman, D., Lee, J., Emge, T. J. & Brennan, J. G. (1997). Inorg. Chem.36, 5772–5776. [PubMed]
  • Cabeza, J. A., del Río, I., Garcia-Álvarez, P. & Miguel, D. (2007). J. Organomet. Chem.692, 3583–3587.
  • Chunchuryukin, A. V., Chase, P. A., Mills, A. M., Lutz, M., Spek, A. L., van Klink, G. P. M. & van Koten, G. (2006). Inorg. Chem.45, 2045–2054. [PubMed]
  • Cotton, F. A., Fanwick, P. E. & Fitch, J. W. III (1978). Inorg. Chem.17, 3254–3257.
  • Cui, H., Turn, S. Q. & Reese, M. A. (2009). Catal. Today, 139, 274–279.
  • Fielding, C., Parsons, S. & Winpenny, R. E. P. (1997). Acta Cryst. C53, 174–176.
  • Hamaguchi, T., Ujimoto, K. & Ando, I. (2007). Inorg. Chem.46, 10455–10457. [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hong, M., Su, W., Cao, R., Zhang, W. & Lu, J. (1999). Inorg. Chem.38, 600–602. [PubMed]
  • Qian, X., Li, Z. & Yang, Q. (2007). Bioorg. Med. Chem.15, 6846–6851. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Saadat, M., Bahaoddini, A. & Nazemi, S. (2004). Biochem. Biophys. Res. Commun.313, 568–569. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thirtle, J. R. (1946). J. Am. Chem. Soc.68, 342–343.
  • Tylicki, R. M., Wu, W., Fanwick, P. E. & Walton, R. A. (1995). Inorg. Chem.34, 988–991.
  • West, D. X., Brown, C. A., Jasinski, J. P., Jasinski, J. M., Heathwaite, R. M., Fortier, D. G., Staples, R. J. & Bucher, J. (1998). J. Chem. Crystallogr.28, 853–860.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography