PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1040.
Published online 2010 April 10. doi:  10.1107/S1600536810012808
PMCID: PMC2979121

2-Chloro-N-(2-chloro­benzo­yl)benzene­sulfonamide

Abstract

In the structure of the title compound, C13H9Cl2NO3S, the N—H bond is anti to the C=O bond and the dihedral angle between the two aromatic rings is 76.9 (1)°. In the crystal structure, mol­ecules are linked by N—H(...)O(S) hydrogen bonds to form inversion dimers.

Related literature

For background literature and similar structures, see: Gowda et al. (2009 [triangle], 2010a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1040-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO3S
  • M r = 330.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1040-efi1.jpg
  • a = 6.5943 (6) Å
  • b = 10.9167 (9) Å
  • c = 20.167 (2) Å
  • β = 95.83 (1)°
  • V = 1444.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.60 mm−1
  • T = 299 K
  • 0.36 × 0.20 × 0.06 mm

Data collection

  • Oxford Xcalibur with a Sapphire CCD detector diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.813, T max = 0.965
  • 5854 measured reflections
  • 2942 independent reflections
  • 1919 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.098
  • S = 1.01
  • 2942 reflections
  • 184 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012808/bt5238sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012808/bt5238Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009, 2010a,b), the structure of N-(2-chlorobenzoyl)2-chlorobenzenesulfonamide (I) has been determined. The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C═O bond (Fig.1), similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(2-chlorobenzoyl)benzenesulfonamide (III)(Gowda et al., 2010a) and N-(benzoyl)2-chlorobenzenesulfonamide (IV)(Gowda et al., 2010b).

Further, the conformation of the C═O bond in the C—SO2—NH—C(O) segment of (I) is syn to the ortho-Cl in the benzoyl ring, similar to that observed in (III).

The molecules are twisted at the S atom with the torsional angle of 66.5 (2)°, compared to those of -66.9 (3)° in (II), -59.0 (2)° (molecule 1) and -67.3 (2)° (molecule 2) in (III), and 66.7 (2)° in (IV).

The dihedral angle between the sulfonyl benzene ring and the —SO2—NH—C—O segment is 86.9 (1)°, compared to the values of 86.5(0.1) in (II), 87.3 (1)° (molecule 1) and 73.3 (1)° (molecule 2) in (III), and 87.3 (1)° in (IV). Furthermore, the dihedral angle between the sulfonyl and the benzoyl benzene rings is 76.9 (1)°, compared to the values of 80.3(0.1) in (II), 69.8 (1)° (molecule 1) and 89.8 (1)° (molecule 2) in (III) and 73.3 (1)° in (IV).

The packing of molecules linked by of N—H···O(S) hydrogen bonds(Table 1) is shown in Fig. 2.

Experimental

The title compound was prepared by refluxing a mixture of 2-chlorobenzoic acid, 2-chlorobenzenesulfonamide and phosphorous oxy chloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was filtered, dried and recrystallized.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were obtained by slow evaporation of its toluene solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map and its coordinates were refined with a distance restraint of N—H = 0.86 (1) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H9Cl2NO3SF(000) = 672
Mr = 330.17Dx = 1.518 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1539 reflections
a = 6.5943 (6) Åθ = 2.8–27.8°
b = 10.9167 (9) ŵ = 0.60 mm1
c = 20.167 (2) ÅT = 299 K
β = 95.83 (1)°Prism, colourless
V = 1444.3 (2) Å30.36 × 0.20 × 0.06 mm
Z = 4

Data collection

Oxford Xcalibur with a Sapphire CCD detector diffractometer2942 independent reflections
Radiation source: fine-focus sealed tube1919 reflections with I > 2σ(I)
graphiteRint = 0.025
Rotation method data acquisition using ω and phi scans.θmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −8→8
Tmin = 0.813, Tmax = 0.965k = −10→13
5854 measured reflectionsl = −10→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0397P)2 + 0.4268P] where P = (Fo2 + 2Fc2)/3
2942 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.31 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2149 (4)0.2794 (2)−0.04754 (11)0.0395 (6)
C20.3515 (4)0.2090 (3)−0.07907 (13)0.0489 (7)
C30.5018 (5)0.2657 (3)−0.11112 (15)0.0676 (9)
H30.59180.2194−0.13340.081*
C40.5167 (5)0.3920 (4)−0.10965 (16)0.0733 (10)
H40.61930.4300−0.13050.088*
C50.3847 (5)0.4618 (3)−0.07844 (15)0.0654 (9)
H50.39630.5467−0.07810.078*
C60.2350 (4)0.4058 (2)−0.04755 (13)0.0520 (7)
H60.14470.4534−0.02610.062*
C70.2465 (4)0.2022 (2)0.11091 (12)0.0419 (6)
C80.3158 (4)0.1217 (2)0.16858 (11)0.0397 (6)
C90.5063 (4)0.1350 (2)0.20376 (13)0.0508 (7)
C100.5629 (5)0.0641 (3)0.25910 (15)0.0685 (9)
H100.69140.07360.28210.082*
C110.4305 (5)−0.0199 (3)0.28004 (16)0.0708 (9)
H110.4685−0.06680.31780.085*
C120.2422 (5)−0.0358 (3)0.24604 (14)0.0629 (8)
H120.1530−0.09370.26040.076*
C130.1849 (4)0.0343 (2)0.19040 (12)0.0492 (7)
H130.05700.02290.16720.059*
N10.1344 (3)0.14241 (17)0.05872 (10)0.0417 (5)
H1N0.122 (4)0.0648 (9)0.0568 (12)0.050*
O1−0.0977 (3)0.31318 (15)0.01764 (9)0.0565 (5)
O2−0.0841 (3)0.12191 (15)−0.04562 (8)0.0492 (5)
O30.2790 (3)0.31054 (16)0.10914 (9)0.0573 (5)
Cl10.34230 (13)0.05007 (7)−0.07821 (5)0.0774 (3)
Cl20.68560 (13)0.23576 (8)0.17804 (5)0.0878 (3)
S10.01817 (10)0.21602 (5)−0.00569 (3)0.04066 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0459 (14)0.0355 (14)0.0351 (13)0.0001 (11)−0.0054 (11)−0.0001 (11)
C20.0469 (15)0.0522 (17)0.0458 (14)0.0054 (13)−0.0033 (13)−0.0018 (13)
C30.0485 (18)0.100 (3)0.0544 (18)0.0085 (18)0.0058 (15)0.0070 (18)
C40.061 (2)0.098 (3)0.059 (2)−0.025 (2)−0.0009 (17)0.032 (2)
C50.074 (2)0.059 (2)0.0605 (19)−0.0170 (17)−0.0039 (18)0.0159 (16)
C60.0678 (18)0.0376 (15)0.0497 (16)−0.0071 (13)0.0023 (14)0.0059 (12)
C70.0524 (15)0.0349 (15)0.0394 (13)−0.0018 (12)0.0102 (12)−0.0042 (12)
C80.0510 (15)0.0342 (14)0.0346 (13)0.0022 (12)0.0071 (12)−0.0039 (11)
C90.0538 (17)0.0483 (16)0.0498 (16)−0.0002 (13)0.0034 (14)−0.0035 (13)
C100.061 (2)0.080 (2)0.062 (2)0.0072 (18)−0.0071 (16)0.0039 (18)
C110.080 (2)0.079 (2)0.0535 (18)0.0169 (19)0.0040 (18)0.0201 (17)
C120.080 (2)0.0596 (19)0.0517 (17)−0.0006 (16)0.0184 (17)0.0157 (14)
C130.0564 (17)0.0485 (16)0.0431 (15)−0.0011 (13)0.0069 (13)0.0024 (13)
N10.0602 (14)0.0242 (10)0.0394 (11)−0.0032 (10)−0.0020 (10)−0.0021 (9)
O10.0614 (12)0.0370 (10)0.0730 (13)0.0118 (9)0.0154 (10)0.0003 (9)
O20.0528 (11)0.0335 (9)0.0577 (11)−0.0052 (8)−0.0111 (9)−0.0007 (8)
O30.0882 (15)0.0323 (10)0.0499 (11)−0.0107 (10)−0.0011 (10)−0.0042 (9)
Cl10.0773 (6)0.0542 (5)0.1022 (7)0.0199 (4)0.0158 (5)−0.0171 (4)
Cl20.0611 (5)0.0780 (6)0.1224 (8)−0.0201 (4)0.0001 (5)0.0151 (5)
S10.0464 (4)0.0281 (3)0.0469 (4)0.0016 (3)0.0015 (3)0.0005 (3)

Geometric parameters (Å, °)

C1—C21.387 (3)C8—C91.386 (3)
C1—C61.387 (3)C8—C131.388 (3)
C1—S11.760 (2)C9—C101.378 (4)
C2—C31.383 (4)C9—Cl21.733 (3)
C2—Cl11.736 (3)C10—C111.362 (4)
C3—C41.383 (4)C10—H100.9300
C3—H30.9300C11—C121.367 (4)
C4—C51.358 (4)C11—H110.9300
C4—H40.9300C12—C131.379 (4)
C5—C61.364 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—H60.9300N1—S11.649 (2)
C7—O31.203 (3)N1—H1N0.852 (10)
C7—N11.387 (3)O1—S11.4153 (17)
C7—C81.492 (3)O2—S11.4312 (17)
C2—C1—C6119.0 (2)C10—C9—C8120.8 (3)
C2—C1—S1123.2 (2)C10—C9—Cl2117.5 (2)
C6—C1—S1117.8 (2)C8—C9—Cl2121.6 (2)
C3—C2—C1119.7 (3)C11—C10—C9120.0 (3)
C3—C2—Cl1118.7 (2)C11—C10—H10120.0
C1—C2—Cl1121.6 (2)C9—C10—H10120.0
C4—C3—C2119.3 (3)C10—C11—C12120.5 (3)
C4—C3—H3120.3C10—C11—H11119.7
C2—C3—H3120.3C12—C11—H11119.7
C5—C4—C3121.5 (3)C11—C12—C13119.8 (3)
C5—C4—H4119.3C11—C12—H12120.1
C3—C4—H4119.3C13—C12—H12120.1
C4—C5—C6119.2 (3)C12—C13—C8120.8 (3)
C4—C5—H5120.4C12—C13—H13119.6
C6—C5—H5120.4C8—C13—H13119.6
C5—C6—C1121.3 (3)C7—N1—S1122.53 (17)
C5—C6—H6119.3C7—N1—H1N123.0 (17)
C1—C6—H6119.3S1—N1—H1N114.4 (17)
O3—C7—N1121.6 (2)O1—S1—O2119.05 (11)
O3—C7—C8124.1 (2)O1—S1—N1109.06 (11)
N1—C7—C8114.3 (2)O2—S1—N1104.36 (10)
C9—C8—C13118.0 (2)O1—S1—C1108.31 (11)
C9—C8—C7121.8 (2)O2—S1—C1109.92 (11)
C13—C8—C7120.1 (2)N1—S1—C1105.26 (11)
C6—C1—C2—C3−1.5 (4)C8—C9—C10—C11−0.3 (4)
S1—C1—C2—C3179.8 (2)Cl2—C9—C10—C11−177.6 (2)
C6—C1—C2—Cl1177.34 (19)C9—C10—C11—C120.9 (5)
S1—C1—C2—Cl1−1.4 (3)C10—C11—C12—C13−0.5 (5)
C1—C2—C3—C41.7 (4)C11—C12—C13—C8−0.4 (4)
Cl1—C2—C3—C4−177.1 (2)C9—C8—C13—C120.9 (4)
C2—C3—C4—C5−1.2 (5)C7—C8—C13—C12−176.1 (2)
C3—C4—C5—C60.4 (5)O3—C7—N1—S1−6.3 (3)
C4—C5—C6—C1−0.1 (4)C8—C7—N1—S1172.07 (17)
C2—C1—C6—C50.7 (4)C7—N1—S1—O1−49.6 (2)
S1—C1—C6—C5179.5 (2)C7—N1—S1—O2−177.81 (19)
O3—C7—C8—C9−40.1 (4)C7—N1—S1—C166.4 (2)
N1—C7—C8—C9141.5 (2)C2—C1—S1—O1−177.1 (2)
O3—C7—C8—C13136.8 (3)C6—C1—S1—O14.1 (2)
N1—C7—C8—C13−41.5 (3)C2—C1—S1—O2−45.5 (2)
C13—C8—C9—C10−0.6 (4)C6—C1—S1—O2135.70 (19)
C7—C8—C9—C10176.4 (2)C2—C1—S1—N166.3 (2)
C13—C8—C9—Cl2176.57 (19)C6—C1—S1—N1−112.4 (2)
C7—C8—C9—Cl2−6.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)2.06 (1)2.913 (2)176 (2)

Symmetry codes: (i) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5238).

References

  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010a). Acta Cryst. E66, o326. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010b). Acta Cryst. E66, o794. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography