PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1075–o1076.
Published online 2010 April 14. doi:  10.1107/S1600536810010470
PMCID: PMC2979117

4-Amino-3,5-bis­(2-pyrid­yl)-4H-1,2,4-triazole–benzene-1,2,3-tricarboxylic acid–water (1/1/2)

Abstract

Cocrystallization of 4-amino-3,5-bis­(2-pyrid­yl)-1,2,4-triazole (2-bpt) with hemimellitic acid (benzene-1,2,3-tricarboxylic acid) dihydrate (H3HMA·2H2O) produces the supra­molecular title compound, C12H10N6·C9H6O6·2H2O. Inter­molecular N—H(...)N hydrogen bonds are observed between the terminal pyridyl and amino groups of the 2-bpt molecule and the dihedral angles between the central ring and the pendant pyridine rings are 3.4 (7) and 13.8 (7)°. In the structure, homosynthons of graph set R 2 2(8) are observed to form centrosymmetric H3HMA dimers, which are extended into a two-dimensional supra­molecular layer via inter­molecular O—H(...)N and C—H(...)O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distance = 3.541 (3) Å]. In addition, inter­layer uncoordinated water mol­ecules connect the layers through O—H(...)O hydrogen bonds, generating a three-dimensional network.

Related literature

For background to the use of carboxylic acid in synthesis, see: Kuduva et al. (1999 [triangle]); Das et al. (2006 [triangle]). For the structure of trimesic acid, see: Biradha et al. (1998 [triangle]); Paz et al. (2003 [triangle]). For co-crystals of H3HMA, see: Dale et al. (2004 [triangle]); Du et al. (2005 [triangle]); For organic crystals of 4-amino-3,5-bis­(2-pyrid­yl)-1,2,4-triazole (2-bpt), see: Mernari et al. (1998 [triangle]); Ramos Silva et al. (2008 [triangle]). For the preparation of 2-bpt, see: Bentiss et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1075-scheme1.jpg

Experimental

Crystal data

  • C12H10N6·C9H6O6·2H2O
  • M r = 484.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1075-efi1.jpg
  • a = 8.4266 (10) Å
  • b = 8.6317 (10) Å
  • c = 15.7318 (18) Å
  • α = 75.152 (12)°
  • β = 77.179 (12)°
  • γ = 88.417 (13)°
  • V = 1078.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 294 K
  • 0.24 × 0.21 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.967, T max = 0.980
  • 5932 measured reflections
  • 3765 independent reflections
  • 2832 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.105
  • S = 1.05
  • 3765 reflections
  • 320 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810010470/rz2426sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010470/rz2426Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author gratefully acknowledges the financial support of Tianjin Normal University and Jiaxing University.

supplementary crystallographic information

Comment

Carboxylic acid is one of the most commonly used functional groups in designing specific organic solids (Kuduva et al., 1999; Das et al., 2006). Compared with the well studied trimesic acid (benzene-1,3,5-tricarboxylic acid, H3TMA; Biradha et al., 1998; Paz et al., 2003), its isomer hemimellitic acid (benzene-1,2,3-tricarboxylic acid, H3HMA) has received little attention, with only few co-crystal structures reported to date (Dale et al., 2004; Du et al., 2005). As regards the angular dipyridyl derivative 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole (2-bpt), it can possibly provide multiple supramolecular interaction sites for molecular recognition, but organic crystals in relation to this component has rarely been studied up to now (Mernari et al., 1998; Ramos Silva et al., 2008). Herein the crystal structure of the title crystalline solid, 2-bpt.H3HMA.2H2O, is reported, which displays a 3-D supramolecular architecture and represents the new organic crystal for 2-bpt molecule.

The asymmetric unit of the title compound (Fig. 1) contains one 2-bpt, one H3HMA acid and two lattice water molecules. The dihedral angle between the 2-bpt and H3HMA rings is 5.4 (4)°. The two pyridyl groups of 2-bpt deviate by 10.7 (7)° from coplanarity and form dihedral angels of 3.4 (7) and 13.8 (7)°, respectively, with the central triazolyl ring. In the H3HMA molecule, the O3/C4/O4 carboxyl group is nearly perpendicular to the benzene plane (dihedral angle 81.4 (7)°), while the corresponding angles for the O1/C1/O2 and O5/C6/O6 groups are 7.8 (1) and 22.1 (8)°, respectively. In the 2-bpt molecule, N5—H5A···N6 and N5—H5B···N1 intramolecular hydrogen interactions are observed, as expected, between the terminal pyridyl and amino groups (Table 1). The O5—C6—O6 carboxyl groups of centrosymmetrically related H3HMA molecules form strong intermolecular hydrogen bonds, affording a dimeric unit with homosynthon of graph set R22(8) (Table 1). Furthermore, the dimers connect adjacent 2-bpt molecules via the nearly perpendicular carboxyl groups (Table 1), generating a 1-D supramolecular array along the [010] direction (Fig. 2). In addition, intrachain C20—H20···O6 contacts (Table 1) and π–π stacking interactions (centroid-centroid distance = 3.541 (3) Å) extend the chains into a 2-D layer. The lattice water molecules occupy the interspaces of adjacent layers. The molecule including the O8 oxygen atom forms interlayer O8—H8A···N2, O8—H8B···O2 and C14—H14···O8 interactions, within which a R22(7) synthon can be observed (Table 1); the water molecule including the O7 oxygen atom hydrogen-bonds adjacent layers and water molecules to finally afford a 3-D supramolecular structure (Table 1, Fig. 3). Examination of the interlayer solvent volume by PLATON (Spek, 2009) reveals a value of 81.0 Å3 (7.5% of the unit cell volume).

Experimental

A mixture of 2-bpt (Bentiss et al., 1999) (23.8 mg, 0.1 mmol), H3HMA.2H2O (24.6 mg, 0.1 mmol) and water (10 ml) was sealed in a Teflon-lined stainless steel vessel (20 ml), which was heated at 413 K for three days and then cooled to room temperature. Colourless block single crystals of the title compound were obtained in 52% yield (25.0 mg, based on 2-bpt). Anal. Calcd for C21H20N6O8: C, 52.07; H, 4.16, N, 17.35. Found: C, 52.16; H, 4.08, N, 17.25%. IR (cm-1): 3504s, 3275s, 1715vs, 1687vs, 1586s, 1559s, 1466s, 1412m, 1254vs, 1154s, 1076m, 1001s, 957m, 893m, 794s, 741s, 699m, 674s, 585m, 545m.

Refinement

The water and amine H atoms were located in a difference Fourier map and refined with the O—H and N—H bond lengths constrained to 0.85 and 0.90 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N). All other H atoms were placed at calculated positions and refined as riding, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
View of the molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level (the dotted lines indicate intramolecular hydrogen bonds).
Fig. 2.
Perspective view of the supramolecular array of the title compound extending along the [010] direction (intrachain π–π interactions and hydrogen bonds are shown as dashed lines).
Fig. 3.
View of the 3-D supramolecular structure of the title compound (interchain π–π interactions and hydrogen bonds are shown as dashed lines).

Crystal data

C12H10N6·C9H6O6·2H2OZ = 2
Mr = 484.43F(000) = 504
Triclinic, P1Dx = 1.492 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4266 (10) ÅCell parameters from 2173 reflections
b = 8.6317 (10) Åθ = 2.8–25.9°
c = 15.7318 (18) ŵ = 0.12 mm1
α = 75.152 (12)°T = 294 K
β = 77.179 (12)°Block, colourless
γ = 88.417 (13)°0.24 × 0.21 × 0.18 mm
V = 1078.0 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer3765 independent reflections
Radiation source: fine-focus sealed tube2832 reflections with I > 2σ(I)
graphiteRint = 0.018
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→9
Tmin = 0.967, Tmax = 0.980k = −9→10
5932 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1197P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3765 reflectionsΔρmax = 0.18 e Å3
320 parametersΔρmin = −0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.15210 (17)0.29442 (17)0.47310 (9)0.0579 (4)
H1−0.20770.21670.50640.087*
O2−0.05082 (17)0.11617 (16)0.39702 (9)0.0569 (4)
O30.02722 (15)0.19395 (14)0.20039 (9)0.0415 (3)
H30.02320.10360.19300.062*
O40.24886 (16)0.10468 (15)0.25232 (9)0.0477 (3)
O50.32592 (17)0.38341 (17)0.07961 (9)0.0548 (4)
H50.38730.39490.02990.082*
O60.48197 (16)0.58328 (16)0.08438 (9)0.0546 (4)
N10.7015 (2)0.42032 (18)0.25775 (11)0.0484 (4)
N20.83363 (18)0.82310 (17)0.24200 (10)0.0402 (4)
N30.95863 (17)0.90648 (17)0.17665 (10)0.0387 (4)
N40.91424 (17)0.68331 (16)0.14315 (9)0.0355 (3)
N50.9121 (2)0.56814 (18)0.09338 (10)0.0482 (4)
H5A1.01310.57430.05830.058*
H5B0.88850.47270.13400.058*
N61.18042 (19)0.76103 (18)−0.01199 (10)0.0462 (4)
C1−0.0538 (2)0.2505 (2)0.40647 (12)0.0395 (4)
C20.0538 (2)0.3858 (2)0.34279 (11)0.0353 (4)
C30.1524 (2)0.3644 (2)0.26222 (11)0.0332 (4)
C40.1486 (2)0.2056 (2)0.23849 (11)0.0353 (4)
C50.2564 (2)0.4922 (2)0.20656 (11)0.0341 (4)
C60.3642 (2)0.4873 (2)0.11777 (12)0.0385 (4)
C70.2594 (2)0.6357 (2)0.23120 (12)0.0410 (4)
H70.33080.71870.19450.049*
C80.1584 (2)0.6570 (2)0.30912 (12)0.0435 (5)
H80.15890.75450.32400.052*
C90.0569 (2)0.5320 (2)0.36447 (12)0.0415 (4)
H9−0.01080.54550.41730.050*
C100.6861 (2)0.5630 (2)0.27668 (11)0.0370 (4)
C110.5973 (3)0.3031 (2)0.31086 (14)0.0565 (6)
H110.60590.20320.29840.068*
C120.4780 (3)0.3209 (2)0.38293 (13)0.0529 (5)
H120.40920.23510.41850.063*
C130.4633 (2)0.4678 (3)0.40076 (13)0.0512 (5)
H130.38340.48430.44860.061*
C140.5686 (2)0.5914 (2)0.34694 (13)0.0494 (5)
H140.56060.69260.35780.059*
C150.8071 (2)0.6891 (2)0.22104 (11)0.0353 (4)
C161.0074 (2)0.8208 (2)0.11698 (11)0.0347 (4)
C171.1425 (2)0.8672 (2)0.03777 (11)0.0350 (4)
C181.3039 (2)0.8006 (3)−0.08423 (13)0.0528 (5)
H181.33130.7281−0.11940.063*
C191.3924 (2)0.9422 (3)−0.10926 (14)0.0516 (5)
H191.47770.9646−0.16000.062*
C201.3524 (2)1.0498 (3)−0.05799 (13)0.0499 (5)
H201.41031.1469−0.07360.060*
C211.2256 (2)1.0132 (2)0.01692 (13)0.0454 (5)
H211.19651.08470.05260.054*
O70.65104 (17)0.06876 (17)0.58459 (10)0.0643 (4)
H7A0.54940.06620.58680.096*
H7B0.68340.01210.62990.096*
O80.68068 (17)0.91230 (18)0.40477 (10)0.0669 (5)
H8A0.72480.88890.35570.100*
H8B0.73660.97090.42400.100*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0631 (9)0.0537 (9)0.0466 (8)−0.0169 (7)0.0181 (7)−0.0186 (7)
O20.0668 (9)0.0442 (8)0.0499 (8)−0.0155 (7)0.0125 (7)−0.0144 (7)
O30.0465 (7)0.0343 (7)0.0474 (7)−0.0019 (6)−0.0106 (6)−0.0166 (6)
O40.0462 (8)0.0411 (8)0.0517 (8)0.0069 (6)−0.0058 (6)−0.0096 (6)
O50.0656 (9)0.0533 (9)0.0392 (8)−0.0188 (7)0.0109 (6)−0.0179 (7)
O60.0509 (8)0.0587 (9)0.0459 (8)−0.0208 (7)0.0083 (6)−0.0128 (7)
N10.0552 (10)0.0360 (9)0.0493 (10)−0.0050 (8)−0.0032 (8)−0.0091 (7)
N20.0413 (8)0.0344 (8)0.0413 (9)−0.0055 (7)0.0000 (7)−0.0108 (7)
N30.0408 (8)0.0327 (8)0.0403 (8)−0.0040 (7)−0.0027 (7)−0.0103 (7)
N40.0392 (8)0.0311 (8)0.0369 (8)−0.0028 (6)−0.0059 (6)−0.0115 (6)
N50.0577 (10)0.0433 (9)0.0448 (9)−0.0134 (8)−0.0009 (8)−0.0210 (7)
N60.0503 (9)0.0411 (9)0.0434 (9)−0.0009 (7)0.0023 (7)−0.0147 (7)
C10.0402 (10)0.0446 (11)0.0321 (10)−0.0070 (8)−0.0016 (8)−0.0114 (8)
C20.0355 (9)0.0389 (10)0.0318 (9)−0.0044 (8)−0.0067 (7)−0.0096 (8)
C30.0327 (9)0.0347 (10)0.0316 (9)−0.0026 (7)−0.0065 (7)−0.0074 (7)
C40.0368 (10)0.0344 (10)0.0300 (9)−0.0030 (8)0.0004 (8)−0.0063 (7)
C50.0335 (9)0.0365 (10)0.0311 (9)−0.0025 (8)−0.0066 (7)−0.0069 (7)
C60.0400 (10)0.0364 (10)0.0353 (10)−0.0053 (8)−0.0039 (8)−0.0055 (8)
C70.0432 (10)0.0394 (11)0.0382 (10)−0.0106 (8)−0.0072 (8)−0.0066 (8)
C80.0524 (11)0.0391 (11)0.0426 (11)−0.0062 (9)−0.0104 (9)−0.0159 (9)
C90.0434 (10)0.0495 (12)0.0336 (10)−0.0051 (9)−0.0047 (8)−0.0166 (8)
C100.0384 (10)0.0349 (10)0.0367 (10)−0.0023 (8)−0.0083 (8)−0.0069 (8)
C110.0714 (15)0.0356 (11)0.0556 (13)−0.0132 (10)−0.0043 (11)−0.0066 (9)
C120.0592 (13)0.0483 (12)0.0446 (12)−0.0186 (10)−0.0076 (10)−0.0017 (9)
C130.0458 (11)0.0630 (14)0.0423 (11)−0.0128 (10)−0.0021 (9)−0.0141 (10)
C140.0471 (11)0.0468 (12)0.0525 (12)−0.0096 (9)0.0001 (9)−0.0178 (10)
C150.0350 (9)0.0324 (10)0.0375 (10)−0.0007 (8)−0.0062 (8)−0.0087 (8)
C160.0368 (9)0.0290 (9)0.0380 (10)−0.0018 (8)−0.0081 (8)−0.0081 (8)
C170.0354 (9)0.0335 (10)0.0351 (9)0.0010 (8)−0.0082 (7)−0.0069 (8)
C180.0558 (12)0.0521 (13)0.0470 (12)0.0038 (10)0.0016 (10)−0.0181 (10)
C190.0411 (11)0.0606 (14)0.0463 (12)−0.0011 (10)0.0005 (9)−0.0100 (10)
C200.0399 (11)0.0532 (12)0.0516 (12)−0.0117 (9)−0.0026 (9)−0.0099 (10)
C210.0430 (11)0.0461 (11)0.0466 (11)−0.0055 (9)−0.0032 (9)−0.0160 (9)
O70.0588 (9)0.0635 (10)0.0571 (9)−0.0175 (8)−0.0048 (7)0.0036 (7)
O80.0636 (10)0.0714 (10)0.0649 (10)−0.0227 (8)0.0080 (8)−0.0329 (8)

Geometric parameters (Å, °)

O1—C11.315 (2)C7—C81.380 (2)
O1—H10.8200C7—H70.9300
O2—C11.205 (2)C8—C91.376 (2)
O3—C41.313 (2)C8—H80.9300
O3—H30.8200C9—H90.9300
O4—C41.210 (2)C10—C141.379 (3)
O5—C61.283 (2)C10—C151.472 (2)
O5—H50.8200C11—C121.377 (3)
O6—C61.240 (2)C11—H110.9300
N1—C111.335 (2)C12—C131.364 (3)
N1—C101.336 (2)C12—H120.9300
N2—C151.319 (2)C13—C141.378 (3)
N2—N31.3661 (19)C13—H130.9300
N3—C161.328 (2)C14—H140.9300
N4—C161.361 (2)C16—C171.466 (2)
N4—C151.363 (2)C17—C211.386 (2)
N4—N51.4169 (19)C18—C191.370 (3)
N5—H5A0.9000C18—H180.9300
N5—H5B0.9000C19—C201.369 (3)
N6—C181.337 (2)C19—H190.9300
N6—C171.340 (2)C20—C211.378 (3)
C1—C21.498 (2)C20—H200.9300
C2—C91.391 (2)C21—H210.9300
C2—C31.406 (2)O7—H7A0.8500
C3—C51.404 (2)O7—H7B0.8499
C3—C41.513 (2)O8—H8A0.8510
C5—C71.392 (2)O8—H8B0.8502
C5—C61.498 (2)
C1—O1—H1109.5C2—C9—H9119.4
C4—O3—H3109.5N1—C10—C14122.72 (16)
C6—O5—H5109.5N1—C10—C15116.49 (15)
C11—N1—C10116.81 (16)C14—C10—C15120.73 (16)
C15—N2—N3107.75 (13)N1—C11—C12124.13 (19)
C16—N3—N2108.01 (13)N1—C11—H11117.9
C16—N4—C15106.25 (14)C12—C11—H11117.9
C16—N4—N5127.04 (14)C13—C12—C11118.18 (18)
C15—N4—N5126.14 (13)C13—C12—H12120.9
N4—N5—H5A104.7C11—C12—H12120.9
N4—N5—H5B106.5C12—C13—C14119.09 (19)
H5A—N5—H5B112.9C12—C13—H13120.5
C18—N6—C17117.34 (16)C14—C13—H13120.5
O2—C1—O1123.81 (16)C13—C14—C10119.07 (18)
O2—C1—C2123.40 (16)C13—C14—H14120.5
O1—C1—C2112.79 (16)C10—C14—H14120.5
C9—C2—C3120.26 (16)N2—C15—N4109.31 (14)
C9—C2—C1119.61 (15)N2—C15—C10124.55 (15)
C3—C2—C1120.12 (15)N4—C15—C10126.07 (15)
C5—C3—C2118.13 (15)N3—C16—N4108.69 (14)
C5—C3—C4121.57 (14)N3—C16—C17124.82 (15)
C2—C3—C4120.28 (14)N4—C16—C17126.47 (15)
O4—C4—O3125.30 (16)N6—C17—C21122.64 (16)
O4—C4—C3122.76 (16)N6—C17—C16116.38 (15)
O3—C4—C3111.93 (15)C21—C17—C16120.97 (16)
C7—C5—C3120.19 (15)N6—C18—C19123.60 (18)
C7—C5—C6116.12 (15)N6—C18—H18118.2
C3—C5—C6123.66 (15)C19—C18—H18118.2
O6—C6—O5123.63 (16)C20—C19—C18118.55 (18)
O6—C6—C5119.51 (16)C20—C19—H19120.7
O5—C6—C5116.85 (14)C18—C19—H19120.7
C8—C7—C5121.14 (16)C19—C20—C21119.48 (18)
C8—C7—H7119.4C19—C20—H20120.3
C5—C7—H7119.4C21—C20—H20120.3
C9—C8—C7119.08 (17)C20—C21—C17118.39 (18)
C9—C8—H8120.5C20—C21—H21120.8
C7—C8—H8120.5C17—C21—H21120.8
C8—C9—C2121.15 (16)H7A—O7—H7B117.1
C8—C9—H9119.4H8A—O8—H8B117.1
C15—N2—N3—C16−0.51 (19)C12—C13—C14—C10−0.1 (3)
O2—C1—C2—C9−172.13 (19)N1—C10—C14—C130.7 (3)
O1—C1—C2—C98.4 (2)C15—C10—C14—C13−176.28 (18)
O2—C1—C2—C37.0 (3)N3—N2—C15—N40.5 (2)
O1—C1—C2—C3−172.47 (16)N3—N2—C15—C10177.44 (16)
C9—C2—C3—C51.9 (3)C16—N4—C15—N2−0.29 (19)
C1—C2—C3—C5−177.24 (15)N5—N4—C15—N2−172.11 (16)
C9—C2—C3—C4−179.82 (16)C16—N4—C15—C10−177.18 (17)
C1—C2—C3—C41.0 (2)N5—N4—C15—C1011.0 (3)
C5—C3—C4—O480.1 (2)N1—C10—C15—N2−164.14 (17)
C2—C3—C4—O4−98.1 (2)C14—C10—C15—N213.0 (3)
C5—C3—C4—O3−98.72 (18)N1—C10—C15—N412.3 (3)
C2—C3—C4—O383.09 (19)C14—C10—C15—N4−170.58 (18)
C2—C3—C5—C7−0.4 (3)N2—N3—C16—N40.33 (19)
C4—C3—C5—C7−178.66 (17)N2—N3—C16—C17−178.23 (16)
C2—C3—C5—C6−178.20 (16)C15—N4—C16—N3−0.03 (19)
C4—C3—C5—C63.6 (3)N5—N4—C16—N3171.69 (16)
C7—C5—C6—O621.5 (3)C15—N4—C16—C17178.50 (17)
C3—C5—C6—O6−160.65 (17)N5—N4—C16—C17−9.8 (3)
C7—C5—C6—O5−157.19 (17)C18—N6—C17—C210.0 (3)
C3—C5—C6—O520.7 (3)C18—N6—C17—C16−179.59 (17)
C3—C5—C7—C8−1.6 (3)N3—C16—C17—N6176.17 (17)
C6—C5—C7—C8176.36 (16)N4—C16—C17—N6−2.1 (3)
C5—C7—C8—C92.0 (3)N3—C16—C17—C21−3.5 (3)
C7—C8—C9—C2−0.5 (3)N4—C16—C17—C21178.23 (17)
C3—C2—C9—C8−1.5 (3)C17—N6—C18—C190.1 (3)
C1—C2—C9—C8177.70 (17)N6—C18—C19—C20−0.2 (3)
C11—N1—C10—C14−0.4 (3)C18—C19—C20—C210.1 (3)
C11—N1—C10—C15176.69 (17)C19—C20—C21—C170.0 (3)
C10—N1—C11—C12−0.4 (3)N6—C17—C21—C20−0.1 (3)
N1—C11—C12—C130.9 (3)C16—C17—C21—C20179.49 (17)
C11—C12—C13—C14−0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.821.792.600 (2)171
O3—H3···N3ii0.821.902.698 (2)166
O5—H5···O6iii0.821.852.674 (2)177
N5—H5A···N60.902.082.786 (2)134
N5—H5B···N10.902.172.804 (2)127
O7—H7A···O8iv0.851.922.766 (2)172
O7—H7B···O4v0.852.062.908 (2)173
O8—H8A···N20.852.032.881 (2)177
O8—H8B···O2vi0.852.122.867 (2)147
C14—H14···O80.932.513.348 (2)149
C19—H19···O4vii0.932.583.427 (2)152
C20—H20···O6viii0.932.473.386 (3)167

Symmetry codes: (i) x−1, y, z; (ii) x−1, y−1, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+1, −y, −z+1; (vi) x+1, y+1, z; (vii) −x+2, −y+1, −z; (viii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2426).

References

  • Bentiss, F., Lagrenee, M., Traisnel, M., Mernari, B. & Elattari, H. (1999). J. Heterocycl. Chem.36, 149–152.
  • Biradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc.120, 11894–11903.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dale, S. H., Elsegood, M. R. J. & Coombs, A. E. L. (2004). CrystEngComm, 6, 328–335 .
  • Das, D. & Desiraju, G. R. (2006). CrystEngComm, 8, 674–679.
  • Du, M., Zhang, Z.-H. & You, Y.-P. (2005). Acta Cryst. C61, o574–o576. [PubMed]
  • Kuduva, S. S., Craig, D. C., Nangia, A. & Desiraju, G. R. (1999). J. Am. Chem. Soc.121, 1936–1944.
  • Mernari, B., El Azhar, M., El Attari, H., Lagrenée, M. & Pierrot, M. (1998). Acta Cryst. C54, 1983–1986.
  • Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.
  • Ramos Silva, M., Silva, J. A., Martins, N. D., Matos Beja, A. & Sobral, A. J. F. N. (2008). Acta Cryst. E64, o1762. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography