PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1180.
Published online 2010 April 28. doi:  10.1107/S160053681001456X
PMCID: PMC2979101

Monoclinic modification of N-benzyl­propan-2-aminium chloride

Abstract

In the title salt, C10H16N+·Cl, the cations and anions are linked by two N—H(...)Cl hydrogen bonds, forming a centrosymmetric tetramer.

Related literature

For the ortho­rhom­bic modification, see: Pourayoubi & Negari (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1180-scheme1.jpg

Experimental

Crystal data

  • C10H16N+·Cl
  • M r = 185.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1180-efi1.jpg
  • a = 9.9566 (7) Å
  • b = 15.5072 (10) Å
  • c = 7.2179 (5) Å
  • β = 111.112 (1)°
  • V = 1039.63 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 120 K
  • 0.26 × 0.26 × 0.11 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.922, T max = 0.966
  • 15855 measured reflections
  • 3008 independent reflections
  • 2303 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.102
  • S = 1.00
  • 3008 reflections
  • 111 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT-Plus (Bruker, 1998 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001456X/ng2758sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001456X/ng2758Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

supplementary crystallographic information

Comment

In the previous work, the structure determination of orthorhombic polymorph of N-benzylpropan-2-aminium chloride (Pourayoubi & Negari, 2010) has been investigated; we report here on the crystal structure of title compound (Fig. 1), a monoclinic polymorph of this salt. The cations and anions are linked together via two different N—H···Cl hydrogen bonds to form a centrosymmetric tetramer, in which two Cl- anions act as a bridge between two C10H16N+ cations. The previously reported structure contains an extended zigzag chain arrangement of cations and anions via two different N—H···Cl hydrogen bonds.

Experimental

The title compound is a by-product of the preparation of P(O)[OC6H5][N(CH2C6H5)(CH(CH3)2)]Cl [from the reaction between P(O)[OC6H5]Cl2 and NH(CH2C6H5)(CH(CH3)2), with 1:2 mole ratio] in CCl4.

Refinement

All hydrogen atoms were calculated from geometrical point of view with exception of H1NA and H1NB, which were located from difference Fourier maps. The H atoms were refined in isotropic approximation in riding model with the Uiso(H) parameters equal to 1.2 Ueq(C,N), 1.5 Ueq(C-methyl), where U(C,N) are respectively the equivalent thermal parameters of the carbon and oxygen atoms to which corresponding H atoms are bonded.

Figures

Fig. 1.
A general view of the title salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. N(1)—H(1NB)···Cl(1) bond is shown by dash line.

Crystal data

C10H16N+·ClF(000) = 400
Mr = 185.69Dx = 1.186 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5439 reflections
a = 9.9566 (7) Åθ = 2.2–29.9°
b = 15.5072 (10) ŵ = 0.32 mm1
c = 7.2179 (5) ÅT = 120 K
β = 111.112 (1)°Prism, colorless
V = 1039.63 (12) Å30.26 × 0.26 × 0.11 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3008 independent reflections
Radiation source: fine-focus sealed tube2303 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −13→14
Tmin = 0.922, Tmax = 0.966k = −21→21
15855 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.102H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.022P)2 + 1.240P] where P = (Fo2 + 2Fc2)/3
3008 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.07253 (4)0.60195 (3)0.78749 (6)0.02540 (11)
N1−0.05680 (14)0.41218 (8)0.7852 (2)0.0203 (3)
H1NA−0.05780.40570.90860.024*
H1NB−0.01370.46240.77730.024*
C10.2525 (2)0.30399 (11)1.0254 (3)0.0290 (4)
H1A0.19710.26801.07680.035*
C20.4001 (2)0.31060 (13)1.1261 (3)0.0373 (4)
H2A0.44500.27901.24530.045*
C30.4816 (2)0.36310 (13)1.0528 (3)0.0393 (5)
H3A0.58250.36801.12160.047*
C40.4152 (2)0.40859 (12)0.8782 (3)0.0363 (4)
H4A0.47090.44450.82700.044*
C50.2677 (2)0.40188 (11)0.7779 (3)0.0280 (4)
H5A0.22300.43340.65870.034*
C60.18499 (18)0.34934 (10)0.8506 (2)0.0219 (3)
C70.02639 (18)0.34037 (10)0.7393 (3)0.0243 (3)
H7A0.00750.33980.59490.029*
H7B−0.00690.28470.77440.029*
C8−0.21251 (18)0.41694 (11)0.6481 (2)0.0243 (3)
H8A−0.21640.42190.50810.029*
C9−0.2914 (2)0.33546 (12)0.6674 (3)0.0340 (4)
H9A−0.24790.28550.62760.051*
H9B−0.39290.33990.58140.051*
H9C−0.28410.32850.80560.051*
C10−0.27797 (18)0.49771 (12)0.7003 (3)0.0283 (4)
H10A−0.22110.54810.69190.042*
H10B−0.27790.49260.83570.042*
H10C−0.37710.50450.60700.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0337 (2)0.02088 (18)0.0252 (2)−0.00177 (15)0.01491 (16)0.00074 (15)
N10.0230 (6)0.0190 (6)0.0207 (6)−0.0021 (5)0.0101 (5)−0.0017 (5)
C10.0358 (9)0.0237 (8)0.0296 (9)0.0017 (7)0.0144 (7)0.0058 (7)
C20.0380 (10)0.0320 (10)0.0354 (10)0.0086 (8)0.0053 (8)0.0012 (8)
C30.0274 (9)0.0318 (10)0.0553 (13)0.0026 (7)0.0109 (9)−0.0149 (9)
C40.0374 (10)0.0273 (9)0.0550 (12)−0.0049 (7)0.0298 (9)−0.0060 (8)
C50.0385 (9)0.0208 (8)0.0309 (9)0.0011 (7)0.0201 (8)0.0013 (7)
C60.0293 (8)0.0153 (7)0.0245 (8)0.0024 (6)0.0139 (6)−0.0011 (6)
C70.0305 (8)0.0173 (7)0.0264 (8)0.0015 (6)0.0120 (7)−0.0031 (6)
C80.0237 (8)0.0273 (8)0.0213 (7)−0.0013 (6)0.0075 (6)−0.0016 (6)
C90.0286 (9)0.0344 (10)0.0395 (10)−0.0109 (7)0.0130 (8)−0.0092 (8)
C100.0236 (8)0.0308 (9)0.0308 (9)0.0034 (6)0.0102 (7)0.0013 (7)

Geometric parameters (Å, °)

N1—C71.495 (2)C5—H5A0.9500
N1—C81.511 (2)C6—C71.498 (2)
N1—H1NA0.8999C7—H7A0.9900
N1—H1NB0.9001C7—H7B0.9900
C1—C61.388 (2)C8—C91.520 (2)
C1—C21.388 (3)C8—C101.521 (2)
C1—H1A0.9500C8—H8A1.0000
C2—C31.382 (3)C9—H9A0.9800
C2—H2A0.9500C9—H9B0.9800
C3—C41.387 (3)C9—H9C0.9800
C3—H3A0.9500C10—H10A0.9800
C4—C51.387 (3)C10—H10B0.9800
C4—H4A0.9500C10—H10C0.9800
C5—C61.389 (2)
C7—N1—C8114.28 (12)N1—C7—C6111.92 (13)
C7—N1—H1NA110.0N1—C7—H7A109.2
C8—N1—H1NA106.2C6—C7—H7A109.2
C7—N1—H1NB108.4N1—C7—H7B109.2
C8—N1—H1NB108.4C6—C7—H7B109.2
H1NA—N1—H1NB109.5H7A—C7—H7B107.9
C6—C1—C2120.88 (17)N1—C8—C9109.96 (14)
C6—C1—H1A119.6N1—C8—C10107.96 (13)
C2—C1—H1A119.6C9—C8—C10112.36 (14)
C3—C2—C1119.97 (18)N1—C8—H8A108.8
C3—C2—H2A120.0C9—C8—H8A108.8
C1—C2—H2A120.0C10—C8—H8A108.8
C2—C3—C4119.60 (18)C8—C9—H9A109.5
C2—C3—H3A120.2C8—C9—H9B109.5
C4—C3—H3A120.2H9A—C9—H9B109.5
C3—C4—C5120.29 (18)C8—C9—H9C109.5
C3—C4—H4A119.9H9A—C9—H9C109.5
C5—C4—H4A119.9H9B—C9—H9C109.5
C4—C5—C6120.49 (17)C8—C10—H10A109.5
C4—C5—H5A119.8C8—C10—H10B109.5
C6—C5—H5A119.8H10A—C10—H10B109.5
C1—C6—C5118.77 (16)C8—C10—H10C109.5
C1—C6—C7120.82 (15)H10A—C10—H10C109.5
C5—C6—C7120.39 (15)H10B—C10—H10C109.5
C6—C1—C2—C30.2 (3)C4—C5—C6—C7−178.39 (15)
C1—C2—C3—C4−0.3 (3)C8—N1—C7—C6168.23 (13)
C2—C3—C4—C50.3 (3)C1—C6—C7—N197.96 (18)
C3—C4—C5—C6−0.3 (3)C5—C6—C7—N1−83.50 (18)
C2—C1—C6—C5−0.2 (3)C7—N1—C8—C962.65 (17)
C2—C1—C6—C7178.39 (16)C7—N1—C8—C10−174.45 (13)
C4—C5—C6—C10.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1NA···Cl1i0.902.253.1517 (14)176
N1—H1NB···Cl10.902.323.2099 (14)170

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2758).

References

  • Bruker (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Pourayoubi, M. & Negari, M. (2010). Acta Cryst. E66, o708. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography