PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1140.
Published online 2010 April 24. doi:  10.1107/S160053681001411X
PMCID: PMC2979090

2,2,2-Tribromo-N-(3-chloro­phen­yl)acetamide

Abstract

In the title compound, C8H5Br3ClNO, the conformation of the N—H bond is anti to the 3-chloro substituent in the benzene ring. An intra­molecular N—H(...)Br hydrogen bond occurs. In the crystal, mol­ecules are packed into infinite chains in the a-axis direction by N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003 [triangle]). For background and related structures, see: Brown (1966 [triangle]); Gowda et al. (2008 [triangle], 2009 [triangle], 2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1140-scheme1.jpg

Experimental

Crystal data

  • C8H5Br3ClNO
  • M r = 406.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1140-efi1.jpg
  • a = 12.803 (1) Å
  • b = 9.146 (1) Å
  • c = 20.221 (3) Å
  • V = 2367.8 (5) Å3
  • Z = 8
  • Cu Kα radiation
  • μ = 14.47 mm−1
  • T = 299 K
  • 0.53 × 0.33 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.049, T max = 0.123
  • 3870 measured reflections
  • 2114 independent reflections
  • 1646 reflections with I > 2σ(I)
  • R int = 0.110
  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086
  • wR(F 2) = 0.387
  • S = 1.59
  • 2114 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 2.07 e Å−3
  • Δρmin = −1.56 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001411X/fl2301sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001411X/fl2301Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

P.A.S. thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

supplementary crystallographic information

Comment

The structure of (I), was determined as a part of our ongoing study of the effect of ring and side chain substituents on the crystal structures of N-aromatic amides (Gowda et al., 2008, 2009, 2010). In (I) the conformation of the N—H bond is anti to the 3-chloro substituent in the benzene ring (Fig.1), similar to that observed in N-(3-chlorophenyl)acetamide (II)(Gowda et al., 2008), and that between the N—H bond and the 3-methyl group in N-(3-methylphenyl)2,2,2-tribromoacetamide (III)(Gowda et al., 2009), but contrary to the syn conformation observed between the N—H bond and the 2-Chloro group in N-(2-chlorophenyl)2,2,2-tribromoacetamide (IV) (Gowda et al., 2010).

Further, the conformation of the N—H bond in (I) is anti to the C=O bond in the side chain, similar to that observed in N-(phenyl)2,2,2-tribromoacetamide, (II), (III) and (IV) (Gowda et al., 2008, 2009, 2010) and other amides (Brown, 1966).

The structure of (I) shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. A packing diagram (Fig. 2) illustrates the N1—H1N···O1 hydrogen bonds (Table 1) involved in the formation of molecular chains along the a-axis of the unit cell.

Experimental

The title compound was prepared from 3-chloroaniline, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Rod like colourless single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its ethanolic solution at room temperature.

Refinement

The H atoms were positioned with idealized geometry using a riding model [N—H = 0.86 Å, C—H = 0.93 Å] and were refined with a riding model conith isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The residual electron-density features are located in the region of Br1 and Br2. The highest peak is 0.98 Å from Br1 and the deepest hole is 1.39 Å from Br2.

Figures

Fig. 1.
Molecular structure of (I), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of (I) with hydrogen bonds shown as dashed lines.

Crystal data

C8H5Br3ClNOF(000) = 1520
Mr = 406.31Dx = 2.280 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.803 (1) Åθ = 4.4–20.5°
b = 9.146 (1) ŵ = 14.47 mm1
c = 20.221 (3) ÅT = 299 K
V = 2367.8 (5) Å3Rod, colourless
Z = 80.53 × 0.33 × 0.25 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1646 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.110
graphiteθmax = 67.0°, θmin = 4.4°
ω/2θ scansh = −15→11
Absorption correction: ψ scan (North et al., 1968)k = −10→0
Tmin = 0.049, Tmax = 0.123l = −24→0
3870 measured reflections3 standard reflections every 120 min
2114 independent reflections intensity decay: 1.5%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.387H-atom parameters constrained
S = 1.59w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
2114 reflections(Δ/σ)max = 0.006
127 parametersΔρmax = 2.07 e Å3
0 restraintsΔρmin = −1.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8142 (8)0.2739 (12)0.3141 (5)0.042 (2)
C20.7763 (8)0.3768 (12)0.2709 (6)0.043 (2)
H20.71010.41670.27690.051*
C30.8383 (13)0.4204 (15)0.2184 (6)0.057 (3)
C40.9361 (13)0.3617 (16)0.2099 (8)0.071 (4)
H40.97730.39020.17430.085*
C50.9715 (11)0.2635 (18)0.2533 (9)0.077 (5)
H51.03740.22310.24670.092*
C60.9141 (11)0.2199 (13)0.3074 (8)0.059 (3)
H60.94190.15590.33850.071*
C70.6833 (9)0.2898 (11)0.4008 (5)0.042 (2)
C80.6221 (8)0.2020 (11)0.4511 (6)0.043 (2)
Br10.55384 (15)0.04007 (19)0.40907 (9)0.0787 (8)
Br20.52069 (17)0.31822 (18)0.49631 (11)0.0893 (9)
Br30.71709 (15)0.1263 (3)0.51772 (8)0.0856 (8)
Cl10.7921 (4)0.5505 (5)0.16439 (19)0.0817 (13)
N10.7560 (8)0.2201 (11)0.3684 (5)0.050 (2)
H1N0.77010.13270.38140.060*
O10.6555 (7)0.4164 (8)0.3902 (4)0.0494 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.032 (5)0.046 (5)0.047 (6)−0.008 (4)0.008 (4)−0.005 (5)
C20.036 (5)0.045 (5)0.048 (6)−0.006 (4)0.000 (4)0.005 (4)
C30.069 (8)0.065 (7)0.039 (5)−0.018 (6)0.006 (5)0.001 (5)
C40.082 (10)0.051 (7)0.079 (10)−0.009 (7)0.041 (8)−0.003 (7)
C50.045 (8)0.070 (9)0.116 (12)−0.003 (7)0.040 (8)0.004 (10)
C60.060 (7)0.040 (5)0.076 (8)0.003 (5)0.017 (6)0.004 (6)
C70.044 (6)0.037 (5)0.044 (5)−0.002 (4)−0.001 (4)0.000 (4)
C80.032 (5)0.037 (5)0.061 (6)0.006 (4)0.004 (5)−0.005 (4)
Br10.0826 (13)0.0758 (12)0.0776 (12)−0.0431 (9)0.0248 (8)−0.0149 (8)
Br20.0953 (15)0.0610 (12)0.1114 (16)0.0226 (9)0.0628 (12)0.0087 (9)
Br30.0700 (12)0.1248 (18)0.0619 (12)0.0134 (10)−0.0027 (7)0.0327 (10)
Cl10.117 (3)0.079 (2)0.0498 (19)−0.006 (2)0.0019 (18)0.0161 (16)
N10.056 (6)0.041 (4)0.052 (5)0.000 (4)0.016 (5)0.015 (4)
O10.042 (4)0.037 (3)0.069 (5)0.000 (3)0.008 (4)0.009 (3)

Geometric parameters (Å, °)

C1—C21.372 (16)C5—H50.9300
C1—C61.378 (17)C6—H60.9300
C1—N11.416 (13)C7—O11.229 (14)
C2—C31.385 (16)C7—N11.305 (16)
C2—H20.9300C7—C81.515 (15)
C3—C41.37 (2)C8—Br21.911 (10)
C3—Cl11.720 (15)C8—Br11.918 (11)
C4—C51.33 (2)C8—Br31.943 (11)
C4—H40.9300N1—H1N0.8600
C5—C61.377 (18)
C2—C1—C6120.8 (10)C5—C6—C1118.0 (14)
C2—C1—N1123.1 (10)C5—C6—H6121.0
C6—C1—N1116.1 (11)C1—C6—H6121.0
C1—C2—C3118.8 (11)O1—C7—N1125.4 (10)
C1—C2—H2120.6O1—C7—C8117.8 (10)
C3—C2—H2120.6N1—C7—C8116.5 (9)
C4—C3—C2120.4 (13)C7—C8—Br2112.2 (7)
C4—C3—Cl1120.3 (10)C7—C8—Br1110.4 (8)
C2—C3—Cl1119.3 (12)Br2—C8—Br1109.4 (5)
C5—C4—C3119.4 (12)C7—C8—Br3109.3 (7)
C5—C4—H4120.3Br2—C8—Br3107.0 (6)
C3—C4—H4120.3Br1—C8—Br3108.5 (5)
C4—C5—C6122.4 (14)C7—N1—C1126.5 (10)
C4—C5—H5118.8C7—N1—H1N116.8
C6—C5—H5118.8C1—N1—H1N116.8
C6—C1—C2—C33.2 (17)O1—C7—C8—Br2−6.9 (13)
N1—C1—C2—C3−178.6 (11)N1—C7—C8—Br2178.6 (9)
C1—C2—C3—C4−0.3 (19)O1—C7—C8—Br1115.4 (10)
C1—C2—C3—Cl1−179.4 (9)N1—C7—C8—Br1−59.1 (12)
C2—C3—C4—C5−1(2)O1—C7—C8—Br3−125.4 (9)
Cl1—C3—C4—C5178.3 (13)N1—C7—C8—Br360.1 (12)
C3—C4—C5—C6−1(3)O1—C7—N1—C1−2(2)
C4—C5—C6—C14(2)C8—C7—N1—C1171.9 (11)
C2—C1—C6—C5−5(2)C2—C1—N1—C7−28.2 (19)
N1—C1—C6—C5176.7 (13)C6—C1—N1—C7150.0 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.203.032 (13)162
N1—H1N···Br30.862.843.177 (9)105

Symmetry codes: (i) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2301).

References

  • Brown, C. J. (1966). Acta Cryst.21, 442–445.
  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o381. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o386. [PMC free article] [PubMed]
  • Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography