PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1204.
Published online 2010 April 28. doi:  10.1107/S1600536810014972
PMCID: PMC2979089

4-Chloro-N-(3,4-dimethyl­phen­yl)benzamide

Abstract

In the title compound, C15H14ClNO, the N—H bond is trans to the C=O bond. The dihedral angle between the two aromatic rings is 5.5 (2)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains running along the a axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003 [triangle]). For related structures, see: Bowes et al. (2003 [triangle]); Gowda et al. (2008a [triangle],b [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1204-scheme1.jpg

Experimental

Crystal data

  • C15H14ClNO
  • M r = 259.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1204-efi1.jpg
  • a = 9.550 (1) Å
  • b = 10.104 (2) Å
  • c = 28.133 (4) Å
  • V = 2714.6 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 299 K
  • 0.38 × 0.20 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.905, T max = 0.984
  • 9354 measured reflections
  • 2469 independent reflections
  • 1405 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086
  • wR(F 2) = 0.193
  • S = 1.16
  • 2469 reflections
  • 166 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014972/bt5253sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014972/bt5253Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

VZR thanks the University Grants Commission, Government of India, New Delhi, for award of a research fellowship.

supplementary crystallographic information

Comment

In the present work, as part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, 2009), the structure of N-(3,4-dimethylphenyl)-4-chlorobenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other(Fig. 1), similar to those observed in N-(3,4-dimethylphenyl)-4-methylbenzamide(II)(Gowda et al., 2009), N-(3,4-dimethylphenyl)benzamide(III)(Gowda et al., 2008a), N-(2,6-dimethylphenyl)4-chlorobenzamide (IV)(Gowda et al., 2008b) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the N—H bond is syn to the meta- methyl-substituent in the anilino ring.

The dihedral angle between the two benzene rings is 5.5 (2)°, compared to the values of 52.6 (1)° and 10.5 (1)° in the two molecules of (II), and 39.9 (2)°, 51.0 (1)° and 87.2 (3)° in the molecules 1, 2 and 3 of (IV), respectively.

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the a-axis is shown in Fig. 2.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Needle like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement

The H atom of the NH group was located in a difference map. It was refined with the distance restrained to N—H = 0.86 (1) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C15H14ClNOF(000) = 1088
Mr = 259.72Dx = 1.271 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2409 reflections
a = 9.550 (1) Åθ = 2.6–27.9°
b = 10.104 (2) ŵ = 0.27 mm1
c = 28.133 (4) ÅT = 299 K
V = 2714.6 (7) Å3Needle, colourless
Z = 80.38 × 0.20 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector2469 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
graphiteRint = 0.051
Rotation method data acquisition using ω and phi scansθmax = 25.3°, θmin = 2.6°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)h = −11→10
Tmin = 0.905, Tmax = 0.984k = −7→12
9354 measured reflectionsl = −24→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H atoms treated by a mixture of independent and constrained refinement
S = 1.16w = 1/[σ2(Fo2) + (0.0485P)2 + 3.5049P] where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max = 0.003
166 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.23 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3133 (4)0.2816 (4)0.31176 (13)0.0477 (10)
C20.2436 (5)0.2315 (5)0.35073 (13)0.0576 (12)
H20.16550.17820.34590.069*
C30.2865 (5)0.2583 (5)0.39707 (13)0.0581 (12)
C40.4057 (5)0.3357 (5)0.40367 (15)0.0602 (13)
C50.4728 (5)0.3856 (4)0.36439 (16)0.0611 (12)
H50.55140.43860.36890.073*
C60.4286 (5)0.3605 (4)0.31838 (14)0.0551 (12)
H60.47590.39640.29250.066*
C70.3374 (4)0.2232 (4)0.22645 (13)0.0500 (11)
C80.2595 (5)0.1668 (4)0.18478 (12)0.0457 (10)
C90.3119 (5)0.1932 (4)0.13955 (13)0.0564 (12)
H90.38990.24750.13630.068*
C100.2503 (6)0.1405 (5)0.09976 (14)0.0663 (14)
H100.28590.15900.06970.080*
C110.1355 (6)0.0602 (5)0.10495 (15)0.0655 (14)
C120.0799 (5)0.0327 (4)0.14903 (17)0.0664 (13)
H120.0014−0.02110.15200.080*
C130.1436 (5)0.0869 (4)0.18880 (15)0.0573 (12)
H130.10720.06880.21880.069*
C140.2071 (6)0.2009 (6)0.43859 (15)0.0912 (18)
H14A0.21010.10610.43710.109*
H14B0.11140.23000.43740.109*
H14C0.24910.23020.46780.109*
C150.4610 (6)0.3627 (5)0.45336 (16)0.0898 (18)
H15A0.48210.28040.46880.108*
H15B0.39150.40950.47140.108*
H15C0.54450.41540.45130.108*
N10.2614 (3)0.2460 (4)0.26579 (11)0.0547 (10)
H1N0.1728 (14)0.233 (4)0.2629 (14)0.066*
O10.4632 (3)0.2440 (4)0.22403 (10)0.0739 (10)
Cl10.0598 (2)−0.01106 (17)0.05511 (5)0.1200 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.038 (2)0.061 (3)0.044 (2)−0.002 (2)−0.0062 (18)−0.007 (2)
C20.045 (3)0.077 (3)0.051 (2)−0.007 (3)0.001 (2)−0.003 (2)
C30.066 (3)0.070 (3)0.038 (2)0.007 (3)0.002 (2)−0.001 (2)
C40.072 (4)0.059 (3)0.050 (3)0.007 (3)−0.016 (2)−0.010 (2)
C50.064 (3)0.052 (3)0.067 (3)−0.012 (3)−0.014 (3)−0.009 (2)
C60.057 (3)0.062 (3)0.046 (2)−0.009 (3)−0.002 (2)−0.002 (2)
C70.040 (3)0.070 (3)0.039 (2)0.006 (2)−0.0009 (19)0.000 (2)
C80.042 (3)0.056 (3)0.039 (2)0.008 (2)−0.0043 (19)−0.0027 (18)
C90.059 (3)0.066 (3)0.045 (2)0.008 (3)0.003 (2)0.002 (2)
C100.089 (4)0.076 (3)0.034 (2)0.018 (3)−0.004 (2)−0.005 (2)
C110.088 (4)0.060 (3)0.048 (3)0.013 (3)−0.020 (3)−0.014 (2)
C120.072 (4)0.054 (3)0.074 (3)−0.004 (3)−0.013 (3)−0.014 (2)
C130.063 (3)0.060 (3)0.050 (2)0.002 (3)0.005 (2)−0.006 (2)
C140.096 (5)0.125 (5)0.052 (3)−0.003 (4)0.005 (3)0.006 (3)
C150.128 (5)0.084 (4)0.058 (3)0.001 (4)−0.032 (3)−0.014 (3)
N10.0341 (19)0.087 (3)0.0428 (18)−0.007 (2)−0.0019 (16)−0.0121 (17)
O10.0312 (16)0.138 (3)0.0523 (18)−0.003 (2)0.0006 (13)−0.0042 (18)
Cl10.1683 (18)0.1139 (13)0.0777 (10)0.0066 (13)−0.0518 (10)−0.0319 (9)

Geometric parameters (Å, °)

C1—C61.372 (5)C9—C101.372 (6)
C1—C21.379 (5)C9—H90.9300
C1—N11.431 (5)C10—C111.372 (7)
C2—C31.393 (5)C10—H100.9300
C2—H20.9300C11—C121.378 (6)
C3—C41.394 (6)C11—Cl11.734 (4)
C3—C141.508 (6)C12—C131.386 (6)
C4—C51.374 (6)C12—H120.9300
C4—C151.519 (6)C13—H130.9300
C5—C61.385 (5)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O11.221 (5)C15—H15A0.9600
C7—N11.344 (5)C15—H15B0.9600
C7—C81.500 (5)C15—H15C0.9600
C8—C131.376 (6)N1—H1N0.860 (10)
C8—C91.393 (5)
C6—C1—C2119.5 (4)C9—C10—C11119.0 (4)
C6—C1—N1123.2 (4)C9—C10—H10120.5
C2—C1—N1117.3 (4)C11—C10—H10120.5
C1—C2—C3122.1 (4)C10—C11—C12121.6 (4)
C1—C2—H2118.9C10—C11—Cl1119.5 (4)
C3—C2—H2118.9C12—C11—Cl1118.9 (4)
C2—C3—C4118.3 (4)C11—C12—C13118.5 (5)
C2—C3—C14120.2 (4)C11—C12—H12120.7
C4—C3—C14121.5 (4)C13—C12—H12120.7
C5—C4—C3118.7 (4)C8—C13—C12121.3 (4)
C5—C4—C15120.8 (5)C8—C13—H13119.4
C3—C4—C15120.5 (5)C12—C13—H13119.4
C4—C5—C6122.8 (4)C3—C14—H14A109.5
C4—C5—H5118.6C3—C14—H14B109.5
C6—C5—H5118.6H14A—C14—H14B109.5
C1—C6—C5118.6 (4)C3—C14—H14C109.5
C1—C6—H6120.7H14A—C14—H14C109.5
C5—C6—H6120.7H14B—C14—H14C109.5
O1—C7—N1123.2 (4)C4—C15—H15A109.5
O1—C7—C8120.6 (4)C4—C15—H15B109.5
N1—C7—C8116.2 (4)H15A—C15—H15B109.5
C13—C8—C9118.5 (4)C4—C15—H15C109.5
C13—C8—C7123.9 (4)H15A—C15—H15C109.5
C9—C8—C7117.6 (4)H15B—C15—H15C109.5
C10—C9—C8121.1 (5)C7—N1—C1126.9 (3)
C10—C9—H9119.4C7—N1—H1N115 (3)
C8—C9—H9119.4C1—N1—H1N118 (3)
C6—C1—C2—C3−0.1 (7)N1—C7—C8—C9153.1 (4)
N1—C1—C2—C3179.0 (4)C13—C8—C9—C10−0.3 (6)
C1—C2—C3—C4−1.5 (7)C7—C8—C9—C10177.1 (4)
C1—C2—C3—C14−179.8 (4)C8—C9—C10—C11−0.2 (7)
C2—C3—C4—C52.1 (6)C9—C10—C11—C120.7 (7)
C14—C3—C4—C5−179.6 (5)C9—C10—C11—Cl1−178.1 (3)
C2—C3—C4—C15−177.2 (4)C10—C11—C12—C13−0.7 (7)
C14—C3—C4—C151.1 (7)Cl1—C11—C12—C13178.1 (3)
C3—C4—C5—C6−1.1 (7)C9—C8—C13—C120.3 (6)
C15—C4—C5—C6178.1 (4)C7—C8—C13—C12−176.9 (4)
C2—C1—C6—C51.1 (6)C11—C12—C13—C80.2 (7)
N1—C1—C6—C5−178.0 (4)O1—C7—N1—C1−8.0 (8)
C4—C5—C6—C1−0.5 (7)C8—C7—N1—C1170.8 (4)
O1—C7—C8—C13149.2 (5)C6—C1—N1—C734.7 (7)
N1—C7—C8—C13−29.6 (6)C2—C1—N1—C7−144.4 (5)
O1—C7—C8—C9−28.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.86 (1)2.04 (2)2.862 (5)160 (4)

Symmetry codes: (i) x−1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5253).

References

  • Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o2751. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340. [PMC free article] [PubMed]
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1365. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography