PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m570.
Published online 2010 April 24. doi:  10.1107/S1600536810014443
PMCID: PMC2979086

Dichlorido{4-cyclo­hexyl-1-[1-(2-pyridyl-κN)ethyl­idene]thio­semicarbazidato-κ2 N 1,S}methyl­tin(IV)

Abstract

The monodeprotonated Schiff base ligand in the title compound, [Sn(CH3)(C14H19N4S)Cl2], N,N′,S-chelates to the Sn atom, which is six-coordinated in an octa­hedral environment. The three coordinating atoms along with the methyl C atom comprise a square plane, above and below which are positioned the Cl atoms. The amino group is a hydrogen-bond donor to a Cl atom of an adjacent mol­ecule, the hydrogen bond giving rise to a helical chain extending parallel to [100].

Related literature

For the crystal structures of other metal derivatives of the Schiff base, see: Joseph et al. (2004 [triangle]); Kovala-Demertzi et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m570-scheme1.jpg

Experimental

Crystal data

  • [Sn(CH3)(C14H19N4S)Cl2]
  • M r = 480.02
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m570-efi1.jpg
  • a = 9.2016 (5) Å
  • b = 12.2434 (7) Å
  • c = 17.4544 (10) Å
  • V = 1966.39 (19) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.68 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.633, T max = 0.730
  • 18838 measured reflections
  • 4498 independent reflections
  • 4223 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.054
  • S = 1.02
  • 4498 reflections
  • 214 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.41 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1493 Friedel pairs
  • Flack parameter: −0.020 (17)

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014443/bt5250sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014443/bt5250Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank MOSTI (grant No. 06-01-09-SF0046), Universiti Malaysia Sarawak and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The mono-deprotonated anion of 2-acetylpyridine 4-cyclohexyl thiosemicarbazone is a ligand that N,N',S-binds to metal atoms (Joseph et al., 2004). Whereas similar ligands have been complexed with diorganotin and triorganotin systems, the monoorganotin analogues have not been so extensively studied. The mono-deprotonated Schiff-base ligand in SnCl2(CH3)(C14H19N4S) N,N',S-chelates to the tin atom, which is six-coordinate in an octahedral environment (Scheme I, Fig. 1). The three coordinating atoms along with the methyl carbon comprise a square plane, above and below which are positioned the chlorine atoms.

Experimental

2-Acetylpyridine 4-cyclohexyl thiosemicarbazone was synthesized by using a literature method (Joseph et al., 2004). The compound (0.28 g, 1 mmol) was dissolved in dry methanol (10 ml) in a Schlenk apparatus under a nitrogen atmosphere. Methyltin trichoride (0.24 g, 1 mmol) dissolved in methanol (10 ml) was added. The mixture was heated for an hour. The solvent was removed and the yellow compound recrystallized from chloroform/methanol (1:1) in 70% yield, m.p. 551-553 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.978 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of N–H 0.84±0.01 Å.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of SnCl2(CH3)(C14H19N4S) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

[Sn(CH3)(C14H19N4S)Cl2]F(000) = 960
Mr = 480.02Dx = 1.621 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8827 reflections
a = 9.2016 (5) Åθ = 2.3–27.7°
b = 12.2434 (7) ŵ = 1.68 mm1
c = 17.4544 (10) ÅT = 293 K
V = 1966.39 (19) Å3Prism, yellow
Z = 40.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer4498 independent reflections
Radiation source: fine-focus sealed tube4223 reflections with I > 2σ(I)
graphiteRint = 0.025
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.633, Tmax = 0.730k = −15→15
18838 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054w = 1/[σ2(Fo2) + (0.032P)2 + 0.1524P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4498 reflectionsΔρmax = 0.29 e Å3
214 parametersΔρmin = −0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 1493 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.020 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn11.061930 (18)0.634199 (13)0.160119 (10)0.03748 (6)
Cl10.97585 (8)0.54078 (6)0.04139 (4)0.04922 (17)
Cl21.10680 (12)0.73379 (8)0.28090 (5)0.0724 (3)
S11.22890 (7)0.75142 (6)0.08461 (5)0.04529 (16)
N10.8388 (3)0.59846 (18)0.20943 (13)0.0411 (5)
N20.9157 (2)0.77150 (16)0.12825 (11)0.0351 (5)
N30.9636 (2)0.85860 (18)0.08811 (12)0.0398 (5)
N41.1533 (3)0.9409 (2)0.02881 (19)0.0602 (7)
H41.2404 (17)0.944 (3)0.0111 (18)0.063 (11)*
C11.1749 (4)0.4916 (3)0.1978 (2)0.0687 (10)
H1A1.17550.48930.25270.103*
H1B1.27310.49360.17920.103*
H1C1.12700.42770.17830.103*
C20.8073 (4)0.5114 (2)0.25205 (17)0.0524 (7)
H20.87830.45860.26020.063*
C30.6713 (4)0.4978 (3)0.28448 (19)0.0599 (9)
H30.65130.43700.31460.072*
C40.5676 (4)0.5746 (3)0.27171 (17)0.0589 (8)
H4A0.47610.56750.29380.071*
C50.5985 (3)0.6628 (2)0.22600 (16)0.0490 (7)
H50.52710.71460.21570.059*
C60.7362 (3)0.6743 (2)0.19527 (14)0.0372 (6)
C70.7802 (3)0.7679 (2)0.14765 (14)0.0363 (5)
C80.6739 (3)0.8530 (3)0.12494 (18)0.0517 (7)
H8A0.72400.91210.10020.077*
H8B0.62490.87990.16970.077*
H8C0.60420.82220.09020.077*
C91.1021 (3)0.8555 (2)0.06741 (14)0.0400 (6)
C101.0719 (4)1.0403 (2)0.0096 (2)0.0595 (8)
H100.97251.03280.02900.071*
C111.1403 (6)1.1369 (3)0.0467 (2)0.0941 (16)
H11A1.24211.14040.03240.113*
H11B1.13511.12880.10190.113*
C121.0651 (7)1.2431 (3)0.0232 (2)0.0936 (15)
H12A0.96711.24360.04370.112*
H12B1.11711.30440.04520.112*
C131.0586 (6)1.2563 (3)−0.0593 (2)0.0750 (11)
H13A1.15611.2688−0.07860.090*
H13B1.00071.3203−0.07120.090*
C140.9968 (8)1.1623 (3)−0.0982 (3)0.123 (2)
H14A1.00861.1717−0.15310.147*
H14B0.89351.1592−0.08750.147*
C151.0660 (8)1.0544 (3)−0.0745 (2)0.115 (2)
H15A1.01090.9947−0.09670.138*
H15B1.16391.0509−0.09500.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.03555 (9)0.03065 (8)0.04623 (9)0.00216 (7)−0.00566 (7)0.00345 (7)
Cl10.0458 (4)0.0469 (4)0.0550 (4)0.0002 (3)−0.0045 (3)−0.0088 (3)
Cl20.0986 (7)0.0686 (5)0.0500 (4)−0.0184 (5)−0.0149 (4)−0.0065 (4)
S10.0341 (3)0.0362 (3)0.0656 (4)0.0016 (3)0.0043 (3)0.0044 (3)
N10.0436 (13)0.0366 (11)0.0431 (11)−0.0039 (10)−0.0010 (9)0.0059 (9)
N20.0395 (12)0.0274 (10)0.0383 (10)0.0034 (9)0.0030 (9)0.0019 (8)
N30.0371 (11)0.0332 (10)0.0491 (11)0.0028 (10)0.0050 (9)0.0071 (10)
N40.0442 (15)0.0431 (14)0.093 (2)0.0067 (11)0.0179 (14)0.0239 (14)
C10.060 (2)0.0515 (19)0.095 (3)0.0150 (17)−0.021 (2)0.0203 (18)
C20.061 (2)0.0445 (16)0.0518 (16)−0.0074 (15)−0.0060 (15)0.0125 (13)
C30.067 (2)0.058 (2)0.0554 (17)−0.0250 (18)−0.0023 (16)0.0152 (15)
C40.0554 (18)0.067 (2)0.0543 (16)−0.0200 (19)0.0087 (16)0.0020 (14)
C50.0451 (17)0.0505 (17)0.0513 (15)−0.0044 (12)0.0106 (13)−0.0029 (12)
C60.0389 (14)0.0353 (13)0.0375 (12)−0.0017 (11)0.0023 (11)−0.0067 (10)
C70.0371 (13)0.0348 (12)0.0371 (13)0.0036 (10)0.0032 (10)−0.0028 (10)
C80.0415 (15)0.0502 (17)0.0632 (16)0.0141 (14)0.0045 (13)0.0060 (14)
C90.0426 (14)0.0317 (13)0.0458 (13)−0.0002 (12)0.0011 (10)0.0017 (11)
C100.0435 (15)0.0419 (15)0.093 (2)0.0065 (15)0.0162 (18)0.0256 (15)
C110.159 (5)0.059 (2)0.064 (2)0.046 (3)−0.036 (3)−0.0167 (19)
C120.154 (4)0.052 (2)0.075 (2)0.032 (3)−0.021 (3)−0.0103 (19)
C130.092 (3)0.0485 (18)0.085 (2)0.013 (2)0.013 (2)0.0252 (17)
C140.214 (7)0.071 (3)0.083 (3)0.057 (3)−0.064 (4)−0.008 (2)
C150.197 (6)0.058 (2)0.090 (3)0.049 (3)−0.067 (4)−0.022 (2)

Geometric parameters (Å, °)

Sn1—C12.136 (3)C5—C61.383 (4)
Sn1—N12.269 (2)C5—H50.9300
Sn1—N22.224 (2)C6—C71.473 (4)
Sn1—S12.4814 (7)C7—C81.483 (4)
Sn1—Cl12.4960 (7)C8—H8A0.9600
Sn1—Cl22.4701 (8)C8—H8B0.9600
S1—C91.753 (3)C8—H8C0.9600
N1—C21.332 (4)C10—C151.479 (5)
N1—C61.348 (3)C10—C111.488 (6)
N2—C71.292 (3)C10—H100.9800
N2—N31.350 (3)C11—C121.529 (5)
N3—C91.326 (3)C11—H11A0.9700
N4—C91.330 (4)C11—H11B0.9700
N4—C101.468 (4)C12—C131.450 (5)
N4—H40.861 (10)C12—H12A0.9700
C1—H1A0.9600C12—H12B0.9700
C1—H1B0.9600C13—C141.453 (6)
C1—H1C0.9600C13—H13A0.9700
C2—C31.383 (5)C13—H13B0.9700
C2—H20.9300C14—C151.523 (5)
C3—C41.359 (5)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.372 (4)C15—H15A0.9700
C4—H4A0.9300C15—H15B0.9700
C1—Sn1—N2171.66 (12)N2—C7—C8122.8 (2)
C1—Sn1—N199.56 (12)C6—C7—C8121.1 (2)
N2—Sn1—N172.12 (8)C7—C8—H8A109.5
C1—Sn1—Cl293.43 (11)C7—C8—H8B109.5
N2—Sn1—Cl286.65 (6)H8A—C8—H8B109.5
N1—Sn1—Cl285.57 (6)C7—C8—H8C109.5
C1—Sn1—S1109.56 (11)H8A—C8—H8C109.5
N2—Sn1—S178.74 (6)H8B—C8—H8C109.5
N1—Sn1—S1150.85 (6)N3—C9—N4117.1 (3)
Cl2—Sn1—S193.69 (3)N3—C9—S1127.9 (2)
C1—Sn1—Cl192.01 (11)N4—C9—S1115.0 (2)
N2—Sn1—Cl186.94 (6)N4—C10—C15110.0 (3)
N1—Sn1—Cl186.53 (6)N4—C10—C11110.1 (3)
Cl2—Sn1—Cl1171.05 (3)C15—C10—C11110.8 (3)
S1—Sn1—Cl191.18 (3)N4—C10—H10108.6
C9—S1—Sn195.70 (9)C15—C10—H10108.6
C2—N1—C6120.1 (3)C11—C10—H10108.6
C2—N1—Sn1124.3 (2)C10—C11—C12111.5 (3)
C6—N1—Sn1115.58 (17)C10—C11—H11A109.3
C7—N2—N3118.5 (2)C12—C11—H11A109.3
C7—N2—Sn1119.51 (17)C10—C11—H11B109.3
N3—N2—Sn1121.94 (16)C12—C11—H11B109.3
C9—N3—N2115.7 (2)H11A—C11—H11B108.0
C9—N4—C10126.0 (3)C13—C12—C11112.3 (3)
C9—N4—H4123 (2)C13—C12—H12A109.1
C10—N4—H4111 (2)C11—C12—H12A109.1
Sn1—C1—H1A109.5C13—C12—H12B109.1
Sn1—C1—H1B109.5C11—C12—H12B109.1
H1A—C1—H1B109.5H12A—C12—H12B107.9
Sn1—C1—H1C109.5C12—C13—C14113.1 (4)
H1A—C1—H1C109.5C12—C13—H13A109.0
H1B—C1—H1C109.5C14—C13—H13A109.0
N1—C2—C3121.5 (3)C12—C13—H13B109.0
N1—C2—H2119.3C14—C13—H13B109.0
C3—C2—H2119.3H13A—C13—H13B107.8
C4—C3—C2119.0 (3)C13—C14—C15113.3 (4)
C4—C3—H3120.5C13—C14—H14A108.9
C2—C3—H3120.5C15—C14—H14A108.9
C3—C4—C5119.6 (3)C13—C14—H14B108.9
C3—C4—H4A120.2C15—C14—H14B108.9
C5—C4—H4A120.2H14A—C14—H14B107.7
C4—C5—C6119.7 (3)C10—C15—C14112.7 (4)
C4—C5—H5120.1C10—C15—H15A109.0
C6—C5—H5120.1C14—C15—H15A109.0
N1—C6—C5120.1 (2)C10—C15—H15B109.0
N1—C6—C7116.6 (2)C14—C15—H15B109.0
C5—C6—C7123.4 (2)H15A—C15—H15B107.8
N2—C7—C6116.1 (2)
C1—Sn1—S1—C9−178.73 (15)C3—C4—C5—C6−1.9 (5)
N2—Sn1—S1—C92.07 (10)C2—N1—C6—C51.0 (4)
N1—Sn1—S1—C93.74 (16)Sn1—N1—C6—C5−176.8 (2)
Cl2—Sn1—S1—C9−83.77 (9)C2—N1—C6—C7180.0 (2)
Cl1—Sn1—S1—C988.72 (9)Sn1—N1—C6—C72.1 (3)
C1—Sn1—N1—C22.9 (3)C4—C5—C6—N10.8 (4)
N2—Sn1—N1—C2−177.8 (2)C4—C5—C6—C7−178.0 (3)
Cl2—Sn1—N1—C2−89.9 (2)N3—N2—C7—C6−176.5 (2)
S1—Sn1—N1—C2−179.50 (18)Sn1—N2—C7—C64.4 (3)
Cl1—Sn1—N1—C294.3 (2)N3—N2—C7—C82.6 (4)
C1—Sn1—N1—C6−179.4 (2)Sn1—N2—C7—C8−176.5 (2)
N2—Sn1—N1—C6−0.01 (17)N1—C6—C7—N2−4.3 (3)
Cl2—Sn1—N1—C687.89 (18)C5—C6—C7—N2174.6 (2)
S1—Sn1—N1—C6−1.7 (3)N1—C6—C7—C8176.6 (2)
Cl1—Sn1—N1—C6−87.92 (18)C5—C6—C7—C8−4.5 (4)
C1—Sn1—N2—C71.9 (9)N2—N3—C9—N4−179.0 (3)
N1—Sn1—N2—C7−2.46 (18)N2—N3—C9—S11.1 (3)
Cl2—Sn1—N2—C7−88.88 (19)C10—N4—C9—N32.6 (5)
S1—Sn1—N2—C7176.68 (19)C10—N4—C9—S1−177.5 (3)
Cl1—Sn1—N2—C784.87 (19)Sn1—S1—C9—N3−2.6 (3)
C1—Sn1—N2—N3−177.3 (8)Sn1—S1—C9—N4177.5 (2)
N1—Sn1—N2—N3178.4 (2)C9—N4—C10—C15−120.0 (5)
Cl2—Sn1—N2—N391.99 (17)C9—N4—C10—C11117.6 (4)
S1—Sn1—N2—N3−2.45 (17)N4—C10—C11—C12175.8 (4)
Cl1—Sn1—N2—N3−94.26 (17)C15—C10—C11—C1253.9 (6)
C7—N2—N3—C9−177.5 (2)C10—C11—C12—C13−54.4 (7)
Sn1—N2—N3—C91.6 (3)C11—C12—C13—C1452.4 (7)
C6—N1—C2—C3−1.8 (4)C12—C13—C14—C15−50.4 (8)
Sn1—N1—C2—C3175.8 (2)N4—C10—C15—C14−174.0 (5)
N1—C2—C3—C40.7 (5)C11—C10—C15—C14−52.0 (7)
C2—C3—C4—C51.2 (5)C13—C14—C15—C1050.5 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···Cl1i0.86 (1)2.36 (1)3.219 (3)177 (3)

Symmetry codes: (i) x+1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5250).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Joseph, M., Suni, V., Kurup, M. R. P., Nethaji, M., Kishore, A. & Bhat, S. G. (2004). Polyhedron, 23, 3069–3080.
  • Kovala-Demertzi, D., Galani, A., Kourkoumelis, N., Miller, J. R. & Demertzis, M. A. (2007). Polyhedron, 26, 2871–2879.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography