PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1138.
Published online 2010 April 24. doi:  10.1107/S1600536810014261
PMCID: PMC2979085

3-Amino­benzoic acid–1,2-bis­(4-pyrid­yl)ethane (1/1)

Abstract

The asymmetric unit of the title compound, C12H12N2·C7H7NO2, contains two 3-amino­benzoic acid mol­ecules and two 1,2-bis­(4-pyrid­yl)ethane mol­ecules. In the two 1,2-bis­(4-pyrid­yl)ethane mol­ecules, the dihedral angles between the pyridyl rings are 2.99 (9) and 46.78 (8)°. In the crystal, the mol­ecules associate through amine and carboxyl group N—H(...)O=C inter­actions between one of the 3-amino­benzoic acid mol­ecules and one of the 1,2-bis­(4-pyrid­yl)ethane mol­ecules, generating R 2 2(14) dimers, which are extended head-to-tail via amine and pyridine N—H(...)N hydrogen bonds. Inter­molecular O—H(...)N, N—H(...)O, N—H(...)N and C—H(...)O hydrogen bonding are observed in the crystal structure. C—H(...)π and π–π stacking inter­actions [centroid–centroid distance = 3.9985 (10) Å] are also present.

Related literature

For applications of 3-amino­benzoic acid, see: Lynch & McClenaghan (2001 [triangle]); Smith (2005 [triangle]). For related structures, see: Smith et al. (1995 [triangle]); Lynch et al. (1998 [triangle]). For a similar dimeric An external file that holds a picture, illustration, etc.
Object name is e-66-o1138-efi1.jpg(14) structure, see: Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1138-scheme1.jpg

Experimental

Crystal data

  • C12H12N2·C7H7NO2
  • M r = 321.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1138-efi2.jpg
  • a = 9.0430 (3) Å
  • b = 13.0565 (5) Å
  • c = 14.6300 (5) Å
  • α = 88.172 (3)°
  • β = 79.366 (3)°
  • γ = 74.506 (3)°
  • V = 1635.72 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.54 × 0.18 × 0.15 mm

Data collection

  • Oxford Diffraction Gemini-S CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009 [triangle]) T min = 0.997, T max = 1.000
  • 12385 measured reflections
  • 5971 independent reflections
  • 4125 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.108
  • S = 0.99
  • 5971 reflections
  • 455 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810014261/xu2742sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014261/xu2742Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Yuanpei University.

supplementary crystallographic information

Comment

The structures of a number of 1:1 adduct compounds of 3-aminobenzoic acid with Lewis bases have been reported. These include compounds with 2-amino-pyrimidine (Smith et al., 1995) and 2-aminobenzothiazole (Lynch et al., 1998). Not only 3-aminobenzoic acid is more effective for the promotion of hydrogen-bonding extensions, but also forms various weak noncovalent interactions, such as π-π stacking and C—H···π interactions.

Our research program aims to gain hydrogen-bonding networks involving 3-aminobenzoic acid with 1,2-bis(4-pyridyl)ethane, which can develop well defined noncovalent supramolecular architectures and form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites. The resulting crystal X-Ray structure (Fig. 1) consists entirely of neutral 3-aminobenzoic acid molecules and neutral 1,2-bis(4-pyridyl)ethane units, with no proton transfer (Lynch & McClenaghan, 2001; Smith, 2005). The title compound comprises non-planar molecules, similar to other analogous compounds (Smith et al., 1995; Lynch et al., 1998) that associate 3-aminobenzoic acid via amine and carboxylic group N—H···O [N···O 3.061 (2) and 3.035 (2) Å] dimer R22(14) (Etter et al., 1990) and form linear hydrogen-bonded via amine and pyridine N—H··· N [N···N 3.048 (2) and 3.017 (2) Å].

The title compound's supramolecular structure can be readily analyzed in terms of carboxyl atom O1 and amino group N1 act as hydrogen-bond donors to pyridyl atoms N2 and N3. Similarly, N4, C22, C28, N1, C3, C38 act as hydrogen-bond donors to carboxyl atoms O2, O4, respectively (Table 1 and Fig. 2).

This layer is consolidated by C—H ···π interaction (C12—H12A···Cg5; full details and symmetry code are given in Table 1). Futhermore, π-π ring stacking interactions are between neighboring complexes in the structure. The distance between Cg1 (N2/C8—C12)···Cg4 (N6/C34—C38) is 3.9985 (10) Å and dihedral angle between two rings is 9.86 (9) °.

Experimental

The 3-aminobenzoic acid (171.0 mg, 1.0 mmol) and 1,2-bis(4-pyridyl)ethane (184 mg, 1.0 mmol) were dissolved in 20 ml 50% methanol-water, the solution was refluxed for 30 min. The filtered solution was transferred to a 25 ml tube after one week at room temperature, and colorless transparent crystals formed (yield 59.36%). Elemental analysis calcd(%) for C19H19N3O2 (Mr=321.37): C, 55.83; H, 5.96; N, 13.08; Found: C, 56.03; H, 5.92; N, 12.96.

Refinement

Amino H atoms were located in a difference Fourier map and were refined isotropically. Water H atoms were located in a difference Fourier map and refined with the distances constraints of O—H = 0.84 Å, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.95 (aromatic) and 0.99 Å (methylene), and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
The molecular packing for the title compound. Hydrogen-bonding associations are shown as dotted lines.

Crystal data

C12H12N2·C7H7NO2Z = 4
Mr = 321.37F(000) = 680
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0430 (3) ÅCell parameters from 6302 reflections
b = 13.0565 (5) Åθ = 2.5–29.2°
c = 14.6300 (5) ŵ = 0.09 mm1
α = 88.172 (3)°T = 100 K
β = 79.366 (3)°Parallelepiped, colorless
γ = 74.506 (3)°0.54 × 0.18 × 0.15 mm
V = 1635.72 (10) Å3

Data collection

Oxford Diffraction Gemini-S CCD diffractometer5971 independent reflections
Radiation source: fine-focus sealed tube4125 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)h = −10→10
Tmin = 0.997, Tmax = 1.000k = −13→15
12385 measured reflectionsl = −17→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.99w = 1/[σ2(Fo2) + (0.0632P)2] where P = (Fo2 + 2Fc2)/3
5971 reflections(Δ/σ)max = 0.002
455 parametersΔρmax = 0.57 e Å3
2 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.76671 (15)0.58027 (10)0.03742 (8)0.0334 (3)
O20.77042 (15)0.69496 (9)−0.07886 (8)0.0328 (3)
O30.26995 (15)0.16295 (9)0.48714 (9)0.0323 (3)
O40.23015 (14)0.28364 (9)0.37667 (8)0.0312 (3)
N10.69956 (18)0.49939 (14)−0.35303 (11)0.0306 (4)
N20.81019 (17)0.73452 (11)0.13170 (10)0.0281 (3)
N30.7482 (2)1.31954 (12)0.50754 (11)0.0374 (4)
N40.28039 (18)0.06579 (14)0.08726 (11)0.0305 (4)
N50.77629 (17)0.10653 (11)0.02344 (10)0.0299 (4)
N60.76549 (16)0.67214 (11)0.41027 (10)0.0261 (3)
C10.75649 (18)0.60925 (13)−0.04865 (12)0.0230 (4)
C20.72593 (18)0.52804 (13)−0.10732 (12)0.0225 (4)
C30.73369 (18)0.54740 (13)−0.20172 (12)0.0226 (4)
H3C0.75910.6100−0.22640.027*
C40.70458 (18)0.47598 (13)−0.26121 (12)0.0238 (4)
C50.67203 (19)0.38323 (13)−0.22244 (13)0.0254 (4)
H5B0.65630.3319−0.26150.030*
C60.66242 (19)0.36513 (13)−0.12816 (13)0.0277 (4)
H6B0.63800.3023−0.10330.033*
C70.68795 (19)0.43750 (13)−0.06922 (13)0.0264 (4)
H7A0.67960.4253−0.00430.032*
C80.7001 (2)0.82631 (14)0.13950 (13)0.0314 (4)
H8A0.61390.83240.10920.038*
C90.7045 (2)0.91298 (15)0.18921 (14)0.0368 (5)
H9A0.62110.97600.19470.044*
C100.8319 (2)0.90730 (15)0.23106 (14)0.0384 (5)
C110.9444 (2)0.81133 (15)0.22388 (13)0.0353 (5)
H11A1.03220.80310.25320.042*
C120.9304 (2)0.72758 (14)0.17472 (13)0.0297 (4)
H12A1.00920.66230.17120.036*
C130.8492 (2)1.00327 (19)0.28015 (19)0.0631 (7)
H13A0.93960.98000.31220.076*
H13B0.87291.05510.23260.076*
C140.7126 (2)1.05708 (17)0.34813 (16)0.0475 (6)
H14A0.68661.00470.39450.057*
H14B0.62291.08260.31570.057*
C150.7326 (2)1.15073 (15)0.39924 (13)0.0335 (5)
C160.6186 (2)1.24545 (14)0.40946 (13)0.0326 (4)
H16A0.53131.25500.37950.039*
C170.6305 (2)1.32601 (15)0.46274 (14)0.0363 (5)
H17A0.54991.39060.46810.044*
C180.8615 (2)1.22878 (15)0.49533 (13)0.0341 (5)
H18A0.94841.22230.52510.041*
C190.8598 (2)1.14407 (15)0.44223 (13)0.0341 (5)
H19A0.94451.08180.43500.041*
C200.25604 (19)0.19120 (13)0.40181 (12)0.0242 (4)
C210.27294 (18)0.10109 (13)0.33654 (12)0.0228 (4)
C220.26585 (18)0.12404 (13)0.24435 (12)0.0232 (4)
H22A0.25350.19520.22420.028*
C230.27665 (18)0.04385 (13)0.18016 (12)0.0235 (4)
C240.28837 (19)−0.05921 (13)0.21297 (13)0.0270 (4)
H24A0.2917−0.11450.17140.032*
C250.2952 (2)−0.08156 (14)0.30540 (13)0.0301 (4)
H25A0.3038−0.15220.32630.036*
C260.28984 (19)−0.00229 (13)0.36817 (13)0.0268 (4)
H26A0.2975−0.01840.43120.032*
C270.8959 (2)0.14566 (14)0.03144 (13)0.0313 (4)
H27A0.99580.1120−0.00340.038*
C280.8827 (2)0.23233 (13)0.08754 (12)0.0280 (4)
H28A0.97200.25660.09040.034*
C290.73906 (19)0.28338 (13)0.13937 (12)0.0227 (4)
C300.6147 (2)0.24242 (13)0.13143 (12)0.0264 (4)
H30A0.51370.27390.16610.032*
C310.6377 (2)0.15652 (14)0.07347 (13)0.0284 (4)
H31A0.55010.13120.06870.034*
C320.71112 (19)0.38225 (13)0.19731 (12)0.0243 (4)
H32A0.62040.38550.24770.029*
H32B0.68290.44480.15770.029*
C330.84736 (19)0.39114 (13)0.24075 (13)0.0282 (4)
H33A0.87790.32780.27900.034*
H33B0.93730.39050.19040.034*
C340.81443 (18)0.48966 (13)0.30095 (12)0.0230 (4)
C350.69101 (19)0.57861 (13)0.29678 (12)0.0280 (4)
H35A0.62040.57860.25600.034*
C360.6707 (2)0.66686 (13)0.35164 (12)0.0277 (4)
H36A0.58540.72670.34760.033*
C370.8843 (2)0.58632 (13)0.41499 (12)0.0287 (4)
H37A0.95270.58840.45650.034*
C380.9119 (2)0.49513 (13)0.36243 (12)0.0265 (4)
H38A0.99750.43610.36830.032*
H1C0.785 (2)0.6290 (10)0.0663 (12)0.040*
H3A0.268 (2)0.2174 (9)0.5172 (12)0.040*
H1A0.731 (2)0.5562 (16)−0.3754 (13)0.034 (5)*
H1B0.714 (2)0.4461 (15)−0.3921 (14)0.036 (5)*
H4A0.252 (2)0.1339 (18)0.0720 (15)0.051 (7)*
H4B0.256 (2)0.0199 (16)0.0528 (14)0.044 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0541 (8)0.0295 (7)0.0231 (8)−0.0198 (6)−0.0098 (6)−0.0049 (6)
O20.0516 (8)0.0259 (7)0.0270 (7)−0.0185 (6)−0.0100 (6)−0.0021 (6)
O30.0530 (8)0.0223 (7)0.0236 (8)−0.0093 (6)−0.0118 (6)−0.0049 (6)
O40.0489 (8)0.0192 (7)0.0268 (7)−0.0078 (6)−0.0110 (6)−0.0042 (5)
N10.0430 (9)0.0253 (9)0.0265 (10)−0.0107 (8)−0.0106 (7)−0.0061 (8)
N20.0338 (8)0.0304 (9)0.0207 (8)−0.0117 (7)−0.0011 (7)−0.0057 (7)
N30.0517 (10)0.0340 (10)0.0277 (9)−0.0169 (8)−0.0006 (8)−0.0077 (7)
N40.0430 (10)0.0251 (9)0.0262 (10)−0.0120 (8)−0.0078 (7)−0.0087 (8)
N50.0357 (9)0.0276 (8)0.0292 (9)−0.0113 (7)−0.0076 (7)−0.0067 (7)
N60.0342 (8)0.0240 (8)0.0203 (8)−0.0078 (6)−0.0046 (7)−0.0050 (6)
C10.0234 (8)0.0217 (9)0.0228 (10)−0.0052 (7)−0.0018 (7)−0.0050 (8)
C20.0211 (8)0.0202 (9)0.0251 (10)−0.0032 (7)−0.0035 (7)−0.0061 (7)
C30.0231 (8)0.0177 (9)0.0267 (10)−0.0047 (7)−0.0039 (7)−0.0047 (7)
C40.0199 (8)0.0225 (9)0.0273 (11)−0.0005 (7)−0.0064 (7)−0.0072 (8)
C50.0243 (9)0.0178 (9)0.0350 (12)−0.0030 (7)−0.0102 (8)−0.0093 (8)
C60.0287 (9)0.0188 (9)0.0369 (12)−0.0075 (7)−0.0069 (8)−0.0024 (8)
C70.0296 (9)0.0234 (10)0.0262 (10)−0.0067 (7)−0.0047 (8)−0.0034 (8)
C80.0345 (10)0.0334 (11)0.0296 (11)−0.0109 (8)−0.0112 (8)−0.0020 (9)
C90.0321 (10)0.0301 (11)0.0476 (13)−0.0047 (8)−0.0093 (9)−0.0105 (9)
C100.0310 (10)0.0368 (11)0.0473 (13)−0.0073 (8)−0.0060 (9)−0.0197 (10)
C110.0265 (9)0.0409 (12)0.0397 (12)−0.0073 (8)−0.0089 (9)−0.0146 (9)
C120.0265 (9)0.0288 (10)0.0325 (11)−0.0063 (8)−0.0015 (8)−0.0097 (8)
C130.0382 (12)0.0631 (16)0.087 (2)−0.0124 (11)−0.0032 (12)−0.0452 (14)
C140.0461 (12)0.0530 (14)0.0454 (14)−0.0181 (11)−0.0027 (11)−0.0187 (11)
C150.0413 (11)0.0320 (11)0.0293 (11)−0.0122 (9)−0.0067 (9)−0.0071 (9)
C160.0329 (10)0.0339 (11)0.0343 (12)−0.0131 (8)−0.0084 (8)0.0014 (9)
C170.0359 (10)0.0294 (11)0.0380 (12)−0.0060 (8)0.0044 (9)−0.0039 (9)
C180.0396 (11)0.0377 (11)0.0309 (11)−0.0179 (9)−0.0094 (9)−0.0028 (9)
C190.0353 (10)0.0295 (10)0.0356 (12)−0.0058 (8)−0.0044 (9)−0.0064 (9)
C200.0270 (9)0.0228 (10)0.0233 (11)−0.0065 (7)−0.0057 (8)−0.0042 (8)
C210.0221 (8)0.0208 (9)0.0260 (10)−0.0063 (7)−0.0039 (7)−0.0051 (7)
C220.0228 (8)0.0205 (9)0.0272 (10)−0.0070 (7)−0.0040 (7)−0.0056 (7)
C230.0204 (8)0.0242 (10)0.0263 (11)−0.0069 (7)−0.0029 (7)−0.0079 (8)
C240.0271 (9)0.0225 (9)0.0316 (11)−0.0065 (7)−0.0039 (8)−0.0116 (8)
C250.0324 (10)0.0196 (9)0.0381 (12)−0.0068 (8)−0.0055 (8)−0.0037 (8)
C260.0313 (9)0.0223 (9)0.0267 (11)−0.0060 (7)−0.0061 (8)−0.0023 (8)
C270.0312 (10)0.0315 (10)0.0312 (11)−0.0091 (8)−0.0024 (8)−0.0111 (8)
C280.0272 (9)0.0282 (10)0.0316 (11)−0.0114 (7)−0.0052 (8)−0.0075 (8)
C290.0295 (9)0.0205 (9)0.0199 (10)−0.0071 (7)−0.0082 (7)0.0002 (7)
C300.0263 (9)0.0247 (9)0.0286 (11)−0.0068 (7)−0.0056 (8)−0.0025 (8)
C310.0293 (9)0.0279 (10)0.0326 (11)−0.0114 (8)−0.0115 (8)−0.0018 (8)
C320.0284 (9)0.0216 (9)0.0229 (10)−0.0066 (7)−0.0034 (7)−0.0050 (7)
C330.0260 (9)0.0270 (10)0.0314 (11)−0.0070 (7)−0.0027 (8)−0.0125 (8)
C340.0237 (9)0.0251 (9)0.0208 (10)−0.0098 (7)0.0004 (7)−0.0050 (7)
C350.0257 (9)0.0300 (10)0.0296 (11)−0.0063 (7)−0.0080 (8)−0.0088 (8)
C360.0298 (9)0.0257 (10)0.0256 (10)−0.0029 (7)−0.0055 (8)−0.0061 (8)
C370.0374 (10)0.0281 (10)0.0218 (10)−0.0069 (8)−0.0101 (8)−0.0050 (8)
C380.0302 (9)0.0242 (9)0.0242 (10)−0.0048 (7)−0.0058 (8)−0.0028 (8)

Geometric parameters (Å, °)

O1—C11.316 (2)C14—H14A0.9900
O1—H1C0.843 (16)C14—H14B0.9900
O2—C11.2192 (19)C15—C161.374 (3)
O3—C201.309 (2)C15—C191.391 (2)
O3—H3A0.842 (14)C16—C171.367 (2)
O4—C201.2245 (19)C16—H16A0.9500
N1—C41.374 (2)C17—H17A0.9500
N1—H1A0.89 (2)C18—C191.377 (2)
N1—H1B0.881 (19)C18—H18A0.9500
N2—C81.330 (2)C19—H19A0.9500
N2—C121.335 (2)C20—C211.497 (2)
N3—C171.332 (2)C21—C221.382 (2)
N3—C181.335 (2)C21—C261.391 (2)
N4—C231.376 (2)C22—C231.401 (2)
N4—H4A0.89 (2)C22—H22A0.9500
N4—H4B0.889 (19)C23—C241.398 (2)
N5—C311.337 (2)C24—C251.383 (3)
N5—C271.338 (2)C24—H24A0.9500
N6—C361.335 (2)C25—C261.391 (2)
N6—C371.339 (2)C25—H25A0.9500
C1—C21.497 (2)C26—H26A0.9500
C2—C31.388 (2)C27—C281.386 (2)
C2—C71.389 (2)C27—H27A0.9500
C3—C41.401 (2)C28—C291.383 (2)
C3—H3C0.9500C28—H28A0.9500
C4—C51.400 (2)C29—C301.392 (2)
C5—C61.383 (3)C29—C321.505 (2)
C5—H5B0.9500C30—C311.375 (2)
C6—C71.390 (2)C30—H30A0.9500
C6—H6B0.9500C31—H31A0.9500
C7—H7A0.9500C32—C331.518 (2)
C8—C91.378 (2)C32—H32A0.9900
C8—H8A0.9500C32—H32B0.9900
C9—C101.385 (2)C33—C341.513 (2)
C9—H9A0.9500C33—H33A0.9900
C10—C111.380 (3)C33—H33B0.9900
C10—C131.521 (3)C34—C381.386 (2)
C11—C121.374 (2)C34—C351.388 (2)
C11—H11A0.9500C35—C361.377 (2)
C12—H12A0.9500C35—H35A0.9500
C13—C141.462 (3)C36—H36A0.9500
C13—H13A0.9900C37—C381.378 (2)
C13—H13B0.9900C37—H37A0.9500
C14—C151.521 (3)C38—H38A0.9500
C1—O1—H1C109.6 (14)N3—C18—C19123.90 (17)
C20—O3—H3A107.9 (14)N3—C18—H18A118.1
C4—N1—H1A117.4 (12)C19—C18—H18A118.1
C4—N1—H1B117.8 (12)C18—C19—C15119.26 (17)
H1A—N1—H1B117.4 (18)C18—C19—H19A120.4
C8—N2—C12117.35 (14)C15—C19—H19A120.4
C17—N3—C18115.91 (15)O4—C20—O3123.30 (15)
C23—N4—H4A117.2 (14)O4—C20—C21122.09 (15)
C23—N4—H4B117.1 (13)O3—C20—C21114.61 (15)
H4A—N4—H4B116.4 (19)C22—C21—C26120.79 (15)
C31—N5—C27116.04 (14)C22—C21—C20118.06 (15)
C36—N6—C37117.17 (14)C26—C21—C20121.11 (15)
O2—C1—O1123.33 (15)C21—C22—C23120.95 (16)
O2—C1—C2122.23 (16)C21—C22—H22A119.5
O1—C1—C2114.44 (15)C23—C22—H22A119.5
C3—C2—C7120.77 (15)N4—C23—C24121.30 (15)
C3—C2—C1117.48 (15)N4—C23—C22120.70 (16)
C7—C2—C1121.74 (16)C24—C23—C22117.97 (16)
C2—C3—C4121.01 (16)C25—C24—C23120.70 (15)
C2—C3—H3C119.5C25—C24—H24A119.7
C4—C3—H3C119.5C23—C24—H24A119.7
N1—C4—C5121.39 (15)C24—C25—C26121.05 (17)
N1—C4—C3120.93 (16)C24—C25—H25A119.5
C5—C4—C3117.57 (16)C26—C25—H25A119.5
C6—C5—C4121.08 (15)C25—C26—C21118.46 (16)
C6—C5—H5B119.5C25—C26—H26A120.8
C4—C5—H5B119.5C21—C26—H26A120.8
C5—C6—C7120.99 (17)N5—C27—C28123.95 (17)
C5—C6—H6B119.5N5—C27—H27A118.0
C7—C6—H6B119.5C28—C27—H27A118.0
C2—C7—C6118.52 (17)C29—C28—C27119.67 (15)
C2—C7—H7A120.7C29—C28—H28A120.2
C6—C7—H7A120.7C27—C28—H28A120.2
N2—C8—C9123.44 (16)C28—C29—C30116.43 (15)
N2—C8—H8A118.3C28—C29—C32123.50 (14)
C9—C8—H8A118.3C30—C29—C32119.95 (15)
C8—C9—C10119.32 (17)C31—C30—C29120.15 (16)
C8—C9—H9A120.3C31—C30—H30A119.9
C10—C9—H9A120.3C29—C30—H30A119.9
C11—C10—C9116.86 (16)N5—C31—C30123.75 (15)
C11—C10—C13121.56 (17)N5—C31—H31A118.1
C9—C10—C13121.56 (18)C30—C31—H31A118.1
C12—C11—C10120.48 (16)C29—C32—C33115.58 (14)
C12—C11—H11A119.8C29—C32—H32A108.4
C10—C11—H11A119.8C33—C32—H32A108.4
N2—C12—C11122.48 (16)C29—C32—H32B108.4
N2—C12—H12A118.8C33—C32—H32B108.4
C11—C12—H12A118.8H32A—C32—H32B107.4
C14—C13—C10114.94 (18)C34—C33—C32114.45 (14)
C14—C13—H13A108.5C34—C33—H33A108.6
C10—C13—H13A108.5C32—C33—H33A108.6
C14—C13—H13B108.5C34—C33—H33B108.6
C10—C13—H13B108.5C32—C33—H33B108.6
H13A—C13—H13B107.5H33A—C33—H33B107.6
C13—C14—C15114.66 (17)C38—C34—C35116.73 (15)
C13—C14—H14A108.6C38—C34—C33120.09 (15)
C15—C14—H14A108.6C35—C34—C33123.16 (14)
C13—C14—H14B108.6C36—C35—C34120.06 (15)
C15—C14—H14B108.6C36—C35—H35A120.0
H14A—C14—H14B107.6C34—C35—H35A120.0
C16—C15—C19116.69 (16)N6—C36—C35123.04 (16)
C16—C15—C14120.43 (17)N6—C36—H36A118.5
C19—C15—C14122.78 (17)C35—C36—H36A118.5
C17—C16—C15120.10 (17)N6—C37—C38123.11 (15)
C17—C16—H16A119.9N6—C37—H37A118.4
C15—C16—H16A119.9C38—C37—H37A118.4
N3—C17—C16124.04 (18)C37—C38—C34119.88 (16)
N3—C17—H17A118.0C37—C38—H38A120.1
C16—C17—H17A118.0C34—C38—H38A120.1

Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1C···N20.84 (2)1.79 (2)2.6294 (19)176 (2)
O3—H3A···N6i0.84 (1)1.75 (1)2.5790 (19)171 (2)
N1—H1A···O4ii0.89 (2)2.21 (2)3.061 (2)158.6 (17)
N1—H1B···N3iii0.882 (19)2.17 (2)3.048 (2)177.8 (19)
N4—H4A···O2ii0.89 (2)2.19 (2)3.035 (2)157.6 (18)
N4—H4B···N5iv0.89 (2)2.13 (2)3.017 (2)171.9 (17)
C3—H3C···O4ii0.952.563.353 (2)141
C22—H22A···O2ii0.952.543.327 (2)141
C28—H28A···O2v0.952.553.492 (2)172
C38—H38A···O4vi0.952.503.448 (2)177
C12—H12A···Cg5v0.952.673.5510 (18)154

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x, y−1, z−1; (iv) −x+1, −y, −z; (v) −x+2, −y+1, −z; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2742).

References

  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. C57, 830–832. [PubMed]
  • Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem.51, 587–592.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, G. (2005). Acta Cryst. E61, o3398–o3400.
  • Smith, G., Gentner, J. M., Lynch, D. E., Byriel, K. A. & Kennard, C. H. L. (1995). Aust. J. Chem.48, 1151–1166.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography