PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1164.
Published online 2010 April 24. doi:  10.1107/S1600536810014431
PMCID: PMC2979082

1,8-Dihydr­oxy-2,4,5,7-tetra­nitro-9,10-anthraquinone

Abstract

The ring system in the title compound, C14H4N4O12, is essentially planar (r.m.s. deviation of the carbon atoms = 0.085 Å); the two hydr­oxy groups form intra­molecular hydrogen bonds to the same carbonyl O atom. The nitro groups are twisted with respect to the mean plane of the ring system by 74.3 (1) (1-nitro), 42.3 (3) (3-nitro), 45.7 (3) (6-nitro) and 66.9 (1)° (8-nitro).

Related literature

For the synthesis of the title compound, see: Teich et al. (2004 [triangle]). For related structures, see: Armaghan et al. (2010 [triangle]); Brown & Colclough (1983 [triangle]), Yatsenko et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1164-scheme1.jpg

Experimental

Crystal data

  • C14H4N4O12
  • M r = 420.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1164-efi1.jpg
  • a = 17.726 (2) Å
  • b = 9.007 (1) Å
  • c = 9.731 (1) Å
  • β = 102.643 (2)°
  • V = 1515.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 223 K
  • 0.35 × 0.25 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer
  • 11323 measured reflections
  • 2672 independent reflections
  • 2034 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.215
  • S = 1.10
  • 2672 reflections
  • 279 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014431/bt5249sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014431/bt5249Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

In continuation to our previous synthesis of anthraquinone derivatives for the absorption of aromatic sulfur compounds from oil when immobilized on silica surface (MCM-41) (Armaghan et al., 2010), we have synthesized the title compound. The compound was reported in a previous report (Teich et al., 2004). In the present study, the synthesis involves functionalization of 1,8-dihydroxy-anthraquinone with the fuming nitric acid. The compound (Scheme I, Fig. 1) is soluble in methanol.

Experimental

Fuming nitric acid (4 ml) was added to a solution of 1,8-dihydroxy-anthraquinone (240 mg, 1.0 mmol) dissolved in concentrated sulfuric acid (5 ml). The mixture was stirred for 2 hours. It was then poured into ice (100 g). The yellow precipitate was washed with water. Crystals were obtained by slow diffusion of n-hexane into a methanol solution of the title compound; m.p.> 473 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.94 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The oxygen-bound H-atoms were located in a difference Fourier map. They were refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

The parameters in the weighting scheme are somewhat large; these could not be reduced without affecting the goodness of fit.

Figures

Fig. 1.
Anisotropic displacement ellipsoid plot (Barbour, 2001) of C14H4N4O12; ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius.

Crystal data

C14H4N4O12F(000) = 848
Mr = 420.21Dx = 1.841 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2323 reflections
a = 17.726 (2) Åθ = 2.3–27.5°
b = 9.007 (1) ŵ = 0.17 mm1
c = 9.731 (1) ÅT = 223 K
β = 102.643 (2)°Plate, brown
V = 1515.9 (3) Å30.35 × 0.25 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX diffractometerRint = 0.045
graphiteθmax = 25.0°, θmin = 1.2°
ω scansh = −19→21
11323 measured reflectionsk = −10→10
2672 independent reflectionsl = −11→11
2034 reflections with I > 2σ(I)

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.10w = 1/[σ2(Fo2) + (0.137P)2 + 0.3859P] where P = (Fo2 + 2Fc2)/3
2672 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.34937 (16)0.2030 (3)0.4649 (3)0.0528 (7)
H10.323 (2)0.172 (5)0.388 (3)0.082 (16)*
O20.24924 (13)0.2174 (2)0.2291 (2)0.0417 (6)
O30.15091 (14)0.2212 (2)−0.0089 (3)0.0410 (6)
H30.183 (2)0.186 (6)0.060 (4)0.099 (18)*
O40.07048 (14)0.2831 (3)−0.2661 (3)0.0503 (7)
O5−0.02307 (13)0.4233 (3)−0.2381 (3)0.0465 (7)
O60.06528 (16)0.8754 (3)0.0919 (3)0.0606 (8)
O70.17014 (16)0.9106 (3)0.0217 (3)0.0565 (8)
O80.22018 (17)0.7979 (3)0.2950 (3)0.0614 (9)
O90.33793 (14)0.8827 (3)0.5708 (3)0.0507 (7)
O100.3791 (2)0.8835 (3)0.3801 (4)0.0895 (12)
O110.51679 (18)0.4003 (4)0.7123 (4)0.0879 (12)
O120.43047 (19)0.2420 (4)0.7288 (3)0.0806 (11)
N10.04326 (15)0.3791 (3)−0.2055 (3)0.0333 (6)
N20.12252 (16)0.8324 (3)0.0558 (3)0.0348 (6)
N30.35601 (16)0.8218 (3)0.4727 (3)0.0413 (7)
N40.45331 (17)0.3494 (3)0.6774 (3)0.0438 (7)
C10.34783 (18)0.3492 (4)0.4612 (3)0.0348 (7)
C20.29723 (16)0.4320 (3)0.3556 (3)0.0293 (7)
C30.24621 (16)0.3536 (3)0.2380 (3)0.0305 (7)
C40.19253 (16)0.4400 (3)0.1305 (3)0.0279 (7)
C50.14731 (17)0.3649 (3)0.0136 (3)0.0292 (7)
C60.09371 (17)0.4510 (3)−0.0830 (3)0.0295 (7)
C70.08449 (17)0.5998 (3)−0.0660 (3)0.0303 (7)
H70.04650.6532−0.12950.036*
C80.13215 (16)0.6704 (3)0.0466 (3)0.0284 (7)
C90.18590 (16)0.5934 (3)0.1447 (3)0.0270 (7)
C100.23464 (18)0.6727 (3)0.2673 (3)0.0326 (7)
C110.29712 (17)0.5868 (3)0.3616 (3)0.0296 (7)
C120.35047 (17)0.6585 (4)0.4664 (3)0.0324 (7)
C130.40121 (18)0.5807 (4)0.5685 (3)0.0374 (8)
H130.43710.63090.63860.045*
C140.39833 (18)0.4294 (4)0.5659 (3)0.0374 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0710 (18)0.0263 (13)0.0517 (16)0.0112 (11)−0.0070 (13)0.0058 (11)
O20.0511 (14)0.0192 (12)0.0471 (14)0.0043 (9)−0.0062 (11)0.0007 (9)
O30.0589 (16)0.0178 (11)0.0410 (13)−0.0005 (10)−0.0008 (11)−0.0021 (9)
O40.0553 (16)0.0469 (15)0.0447 (14)0.0009 (12)0.0024 (11)−0.0179 (12)
O50.0356 (13)0.0538 (15)0.0459 (14)−0.0033 (11)−0.0002 (10)−0.0021 (11)
O60.0752 (19)0.0413 (15)0.0698 (19)0.0242 (13)0.0254 (15)0.0017 (12)
O70.0714 (18)0.0215 (12)0.080 (2)−0.0048 (12)0.0241 (15)0.0037 (12)
O80.094 (2)0.0270 (14)0.0471 (15)0.0208 (13)−0.0187 (14)−0.0113 (11)
O90.0628 (16)0.0403 (14)0.0484 (15)0.0035 (11)0.0108 (12)−0.0159 (11)
O100.174 (4)0.0379 (16)0.074 (2)−0.0259 (18)0.066 (2)−0.0057 (14)
O110.057 (2)0.092 (3)0.097 (3)0.0004 (17)−0.0214 (18)0.020 (2)
O120.075 (2)0.089 (2)0.067 (2)0.0012 (17)−0.0084 (16)0.0411 (18)
N10.0357 (15)0.0309 (14)0.0308 (13)−0.0076 (11)0.0020 (11)0.0005 (11)
N20.0458 (16)0.0257 (14)0.0300 (13)0.0127 (12)0.0018 (11)0.0004 (11)
N30.0558 (17)0.0317 (15)0.0339 (15)−0.0049 (13)0.0047 (13)−0.0061 (12)
N40.0417 (17)0.0464 (18)0.0391 (16)0.0086 (13)−0.0002 (13)0.0057 (13)
C10.0400 (17)0.0286 (17)0.0348 (16)0.0070 (13)0.0064 (13)0.0033 (12)
C20.0344 (16)0.0266 (16)0.0262 (15)0.0051 (12)0.0052 (12)0.0020 (11)
C30.0357 (17)0.0223 (17)0.0321 (16)0.0040 (11)0.0045 (13)0.0021 (12)
C40.0301 (15)0.0205 (15)0.0324 (15)0.0006 (11)0.0052 (12)0.0015 (11)
C50.0361 (16)0.0214 (15)0.0307 (15)−0.0014 (12)0.0085 (12)0.0007 (11)
C60.0315 (15)0.0259 (16)0.0297 (15)−0.0030 (12)0.0041 (12)−0.0004 (12)
C70.0321 (16)0.0291 (16)0.0285 (15)0.0032 (12)0.0041 (12)0.0043 (12)
C80.0348 (16)0.0196 (15)0.0310 (15)0.0039 (12)0.0078 (12)0.0003 (12)
C90.0321 (15)0.0218 (15)0.0273 (15)0.0037 (12)0.0071 (12)0.0019 (11)
C100.0457 (18)0.0206 (16)0.0294 (15)0.0046 (13)0.0034 (13)0.0000 (12)
C110.0377 (17)0.0241 (16)0.0272 (15)0.0027 (12)0.0073 (13)0.0002 (11)
C120.0380 (16)0.0294 (17)0.0295 (15)−0.0012 (13)0.0064 (12)−0.0019 (12)
C130.0398 (18)0.0413 (19)0.0297 (16)−0.0005 (14)0.0047 (13)−0.0039 (13)
C140.0355 (17)0.042 (2)0.0319 (17)0.0073 (14)0.0019 (13)0.0037 (14)

Geometric parameters (Å, °)

O1—C11.317 (4)C1—C141.401 (4)
O1—H10.84 (3)C1—C21.419 (4)
O2—C31.232 (4)C2—C111.395 (4)
O3—C51.316 (4)C2—C31.474 (4)
O3—H30.84 (4)C3—C41.473 (4)
O4—N11.206 (3)C4—C91.396 (4)
O5—N11.216 (3)C4—C51.412 (4)
O6—N21.208 (4)C5—C61.413 (4)
O7—N21.201 (4)C6—C71.364 (4)
O8—C101.199 (4)C7—C81.383 (4)
O9—N31.203 (4)C7—H70.9400
O10—N31.205 (4)C8—C91.379 (4)
O11—N41.194 (4)C9—C101.493 (4)
O12—N41.199 (4)C10—C111.491 (4)
N1—C61.475 (4)C11—C121.389 (4)
N2—C81.474 (4)C12—C131.377 (4)
N3—C121.474 (4)C13—C141.364 (4)
N4—C141.478 (4)C13—H130.9400
C1—O1—H1108 (4)C4—C5—C6116.9 (3)
C5—O3—H3107 (4)C7—C6—C5122.7 (3)
O4—N1—O5125.1 (3)C7—C6—N1117.5 (2)
O4—N1—C6118.3 (2)C5—C6—N1119.8 (3)
O5—N1—C6116.6 (3)C6—C7—C8118.6 (3)
O7—N2—O6125.3 (3)C6—C7—H7120.7
O7—N2—C8117.8 (3)C8—C7—H7120.7
O6—N2—C8116.8 (3)C9—C8—C7121.8 (3)
O9—N3—O10125.2 (3)C9—C8—N2121.9 (2)
O9—N3—C12117.4 (3)C7—C8—N2116.4 (2)
O10—N3—C12117.4 (3)C8—C9—C4119.3 (3)
O11—N4—O12125.1 (3)C8—C9—C10120.2 (3)
O11—N4—C14116.7 (3)C4—C9—C10120.4 (2)
O12—N4—C14118.1 (3)O8—C10—C11121.1 (3)
O1—C1—C14119.3 (3)O8—C10—C9121.0 (3)
O1—C1—C2123.4 (3)C11—C10—C9117.7 (3)
C14—C1—C2117.2 (3)C12—C11—C2119.3 (3)
C11—C2—C1120.1 (3)C12—C11—C10120.3 (3)
C11—C2—C3120.3 (2)C2—C11—C10120.0 (2)
C1—C2—C3119.6 (3)C13—C12—C11121.7 (3)
O2—C3—C4120.5 (3)C13—C12—N3116.8 (3)
O2—C3—C2120.2 (3)C11—C12—N3121.6 (3)
C4—C3—C2119.3 (3)C14—C13—C12118.6 (3)
C9—C4—C5120.6 (3)C14—C13—H13120.7
C9—C4—C3120.5 (3)C12—C13—H13120.7
C5—C4—C3118.9 (3)C13—C14—C1123.0 (3)
O3—C5—C4124.4 (3)C13—C14—N4117.3 (3)
O3—C5—C6118.6 (3)C1—C14—N4119.7 (3)
O1—C1—C2—C11177.7 (3)C5—C4—C9—C82.9 (4)
C14—C1—C2—C11−2.4 (4)C3—C4—C9—C8−176.4 (3)
O1—C1—C2—C3−3.7 (5)C5—C4—C9—C10−179.1 (3)
C14—C1—C2—C3176.3 (3)C3—C4—C9—C101.6 (4)
C11—C2—C3—O2176.3 (3)C8—C9—C10—O811.7 (5)
C1—C2—C3—O2−2.3 (4)C4—C9—C10—O8−166.3 (3)
C11—C2—C3—C4−2.8 (4)C8—C9—C10—C11−173.9 (3)
C1—C2—C3—C4178.6 (3)C4—C9—C10—C118.1 (4)
O2—C3—C4—C9176.3 (3)C1—C2—C11—C124.3 (4)
C2—C3—C4—C9−4.5 (4)C3—C2—C11—C12−174.3 (3)
O2—C3—C4—C5−3.0 (4)C1—C2—C11—C10−168.6 (3)
C2—C3—C4—C5176.1 (3)C3—C2—C11—C1012.8 (4)
C9—C4—C5—O3178.9 (3)O8—C10—C11—C12−13.8 (5)
C3—C4—C5—O3−1.8 (4)C9—C10—C11—C12171.8 (3)
C9—C4—C5—C6−2.6 (4)O8—C10—C11—C2159.0 (3)
C3—C4—C5—C6176.7 (3)C9—C10—C11—C2−15.4 (4)
O3—C5—C6—C7178.2 (3)C2—C11—C12—C13−3.0 (5)
C4—C5—C6—C7−0.5 (4)C10—C11—C12—C13169.9 (3)
O3—C5—C6—N10.2 (4)C2—C11—C12—N3176.3 (3)
C4—C5—C6—N1−178.5 (2)C10—C11—C12—N3−10.8 (4)
O4—N1—C6—C7142.1 (3)O9—N3—C12—C13−67.5 (4)
O5—N1—C6—C7−37.2 (4)O10—N3—C12—C13111.6 (4)
O4—N1—C6—C5−39.8 (4)O9—N3—C12—C11113.1 (3)
O5—N1—C6—C5140.9 (3)O10—N3—C12—C11−67.7 (4)
C5—C6—C7—C83.2 (4)C11—C12—C13—C14−0.2 (5)
N1—C6—C7—C8−178.8 (3)N3—C12—C13—C14−179.6 (3)
C6—C7—C8—C9−2.9 (4)C12—C13—C14—C12.2 (5)
C6—C7—C8—N2176.9 (3)C12—C13—C14—N4−179.7 (3)
O7—N2—C8—C976.1 (4)O1—C1—C14—C13179.0 (3)
O6—N2—C8—C9−106.8 (3)C2—C1—C14—C13−1.0 (5)
O7—N2—C8—C7−103.7 (3)O1—C1—C14—N41.0 (5)
O6—N2—C8—C773.4 (3)C2—C1—C14—N4−179.0 (3)
C7—C8—C9—C4−0.1 (4)O11—N4—C14—C13−38.1 (5)
N2—C8—C9—C4−179.9 (3)O12—N4—C14—C13139.6 (4)
C7—C8—C9—C10−178.1 (3)O11—N4—C14—C1140.0 (4)
N2—C8—C9—C102.1 (4)O12—N4—C14—C1−42.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.84 (3)1.84 (3)2.579 (3)146 (5)
O3—H3···O20.84 (4)1.82 (3)2.576 (3)148 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5249).

References

  • Armaghan, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, o767. [PMC free article] [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Brown, C. J. & Colclough, M. L. (1983). Acta Cryst. C39, 300–302.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Teich, L., Daub, K. S., Krugel, V., Nissler, L., Gebhardt, R. & Eger, K. (2004). Bioorg. Med. Chem.12, 5961–5971. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Yatsenko, A. V., Paseshnichenko, K. A. & Popov, S. I. (1996). Acta Cryst. C52, 3258–3260.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography