PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1069.
Published online 2010 April 14. doi:  10.1107/S1600536810012584
PMCID: PMC2979070

2-(4-Bromo­phen­yl)-2-methyl-2,3-di­hydro­quinazolin-4(1H)-one

Abstract

In the title compound, C15H13BrN2O, the pyrimidine ring adopts a skew boat conformation. The amino H atom forms an inter­molecular hydrogen bond with the carbonyl O atom of an adjacent mol­ecule, forming an inversion dimer. Another lone pair of electrons on the same carbonyl O atom acts as acceptor for another N—H(...)O inter­molecular hydrogen bond with a neighbouring mol­ecule, forming chains along the c axis.

Related literature

For biological properties of quinazolinone derivatives, see: Alagarsamy et al. (2006 [triangle], 2007 [triangle]); Hwang et al. (2008 [triangle]); Na et al. (2008 [triangle]); Nandy et al. (2006 [triangle]). For related structures, see: Wang et al. (2008 [triangle]); Zhang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1069-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O
  • M r = 317.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1069-efi1.jpg
  • a = 12.2106 (3) Å
  • b = 9.0507 (2) Å
  • c = 12.4046 (3) Å
  • β = 101.719 (1)°
  • V = 1342.31 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.06 mm−1
  • T = 296 K
  • 0.39 × 0.31 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.343, T max = 0.801
  • 16905 measured reflections
  • 2369 independent reflections
  • 2068 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.087
  • S = 1.05
  • 2369 reflections
  • 181 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.89 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012584/pv2270sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012584/pv2270Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Science Foundation (grant No. 08KJD150019) and the Qing Lan Project (grant No. 08QLT001) of the Jiangsu Education Committee for financial support.

supplementary crystallographic information

Comment

The synthesis of quinazolinone derivatives has been the focus of great interest, because it was reported that its derivatives possessed a broad spectrum of biological properties. Some of these activities include antidepressant (Na et al., 2008), anticancer (Hwang et al., 2008), anti-inflammatory (Alagarsamy, et al., 2007), antibacterial (Alagarsamy et al., 2006), and antitubercular activity (Nandy et al., 2006). The title compound may be used as a new precursor for obtaining bioactive molecules. We report here the crystal structure of the title compound, (I).

In the title molecule the pyrimidine ring of the quinazolinone moiety is slightly distorted and adopts a skew conformation (Fig. 1). The atoms C1 and N1 deviate from the basal plane defined by the atoms C2/C3/C8/N2 by 0.631 (4) and 0.222 (4) Å, respectively. Similar structures were observed in the structures of 2-(4-chloroanilino)-3-(2-hydroxyethyl)-quinazolin-4(3H)-one (Wang et al., 2008) and 3-(2-hydroxyethyl)-2-(p-tolylamino)-quinazolin-4(3H)-one (Zhang et al., 2009). In (I), the basal plane of the pyrimidine ring is nearly parallel to the phenyl ring C3/C4/C5/C6/C7/C8, forming a dihedral angle of 4.5 (2)°, and is nearly perpendicular to another 4-bromophenyl ring, forming a dihedral angle of 82.2 (1)°.

Intermolecular N1—H1···O1 hydrogen bonds (Table 1) are formed between the amino and carbonyl groups, and link the moleclues forming dimers (Fig. 2). Another intermolecular N2—H2···O1 hydrogen bond links the neighbouring molecules forming polymeric chains along the c-axis.

Experimental

The title compound was prepared by the reaction of 2-aminobenzamide (0.272 g, 2 mmol) and 4'-bromoacetophenone (0.398 g, 2 mmol) in the presence of iodine (0.026 g) in tetrahydrofuran at 323 K for 6 h (yield 86%, m.p. 494–496 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution.

Refinement

The H atoms bonded to C atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.93 and 0.96 Å, for aryl and methyl H atoms, respectively; the H atoms bonded to N atoms were allowed to refine. The Uiso(H) were allowed at 1.2Ueq(parent atoms). The final difference map was essentially featurless with the residual electron density located in the close proximity of the Br1 atom.

Figures

Fig. 1.
The molecular structure drawing for (I) showing 30% probability of displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The molecular packing diagram of (I).

Crystal data

C15H13BrN2OF(000) = 640
Mr = 317.18Dx = 1.570 Mg m3
Monoclinic, P21/cMelting point = 494–496 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.2106 (3) ÅCell parameters from 7144 reflections
b = 9.0507 (2) Åθ = 2.8–27.1°
c = 12.4046 (3) ŵ = 3.06 mm1
β = 101.719 (1)°T = 296 K
V = 1342.31 (5) Å3Block, colourless
Z = 40.39 × 0.31 × 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer2369 independent reflections
Radiation source: fine-focus sealed tube2068 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −14→14
Tmin = 0.343, Tmax = 0.801k = −10→10
16905 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0402P)2 + 1.4299P] where P = (Fo2 + 2Fc2)/3
2369 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.89 e Å3
2 restraintsΔρmin = −0.86 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.39200 (3)0.15530 (4)0.53610 (3)0.06231 (16)
O10.12331 (16)0.5903 (2)−0.02983 (14)0.0438 (5)
N20.14117 (19)0.7611 (2)0.27005 (18)0.0356 (5)
C20.1400 (2)0.6296 (3)0.0687 (2)0.0331 (6)
C100.1575 (2)0.4972 (3)0.3192 (2)0.0305 (5)
N10.07053 (18)0.5872 (3)0.13329 (17)0.0341 (5)
C150.1462 (2)0.4648 (3)0.4258 (2)0.0423 (6)
H15A0.09180.51360.45500.051*
C80.2278 (2)0.7955 (3)0.2193 (2)0.0339 (6)
C70.3078 (2)0.9022 (3)0.2615 (2)0.0430 (7)
H7A0.30470.95010.32710.052*
C110.2387 (2)0.4209 (3)0.2788 (2)0.0371 (6)
H11A0.24710.43910.20710.045*
C30.2318 (2)0.7284 (3)0.1177 (2)0.0342 (6)
C9−0.0294 (2)0.6307 (3)0.2795 (2)0.0418 (6)
H9A−0.07520.69530.22780.050*
H9B−0.02240.66990.35250.050*
H9C−0.06330.53460.27600.050*
C10.0863 (2)0.6182 (3)0.2514 (2)0.0312 (5)
C130.2944 (2)0.2903 (3)0.4473 (2)0.0396 (6)
C140.2138 (3)0.3620 (3)0.4894 (2)0.0462 (7)
H14A0.20460.34150.56050.055*
C40.3171 (2)0.7652 (3)0.0637 (2)0.0417 (6)
H4A0.32020.7199−0.00300.050*
C50.3972 (2)0.8676 (4)0.1070 (3)0.0494 (7)
H5A0.45460.89060.07070.059*
C120.3077 (2)0.3185 (3)0.3416 (2)0.0416 (6)
H12A0.36230.26930.31290.050*
C60.3913 (3)0.9364 (3)0.2060 (3)0.0500 (7)
H6A0.44471.00670.23520.060*
H20.146 (2)0.794 (3)0.3350 (12)0.042 (8)*
H10.0147 (16)0.535 (3)0.103 (2)0.035 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0575 (2)0.0674 (3)0.0598 (2)0.01474 (16)0.00690 (16)0.02754 (17)
O10.0550 (12)0.0520 (12)0.0237 (10)−0.0116 (9)0.0066 (8)−0.0021 (8)
N20.0477 (13)0.0326 (11)0.0280 (12)−0.0021 (10)0.0111 (10)−0.0048 (9)
C20.0381 (14)0.0331 (13)0.0269 (13)0.0041 (11)0.0038 (10)0.0031 (10)
C100.0313 (12)0.0325 (13)0.0277 (13)−0.0051 (10)0.0064 (10)−0.0031 (10)
N10.0361 (12)0.0392 (12)0.0257 (11)−0.0056 (10)0.0030 (9)−0.0014 (9)
C150.0455 (16)0.0506 (17)0.0340 (15)0.0063 (13)0.0156 (12)0.0007 (13)
C80.0374 (14)0.0318 (13)0.0311 (14)0.0028 (11)0.0036 (11)0.0024 (11)
C70.0515 (17)0.0393 (15)0.0359 (15)−0.0041 (13)0.0030 (12)−0.0031 (12)
C110.0417 (14)0.0418 (15)0.0301 (14)0.0035 (12)0.0129 (11)0.0039 (11)
C30.0374 (14)0.0353 (13)0.0294 (13)0.0018 (11)0.0057 (11)0.0016 (11)
C90.0376 (14)0.0474 (16)0.0416 (16)0.0047 (12)0.0111 (12)0.0009 (13)
C10.0346 (13)0.0338 (13)0.0257 (13)−0.0010 (10)0.0075 (10)−0.0022 (10)
C130.0366 (14)0.0401 (15)0.0394 (15)−0.0012 (12)0.0013 (11)0.0088 (12)
C140.0519 (17)0.0572 (18)0.0307 (15)0.0038 (14)0.0116 (13)0.0083 (13)
C40.0403 (15)0.0485 (16)0.0370 (15)0.0016 (13)0.0100 (12)0.0010 (12)
C50.0365 (15)0.0568 (19)0.056 (2)−0.0031 (13)0.0116 (13)0.0052 (15)
C120.0381 (15)0.0444 (15)0.0438 (16)0.0054 (12)0.0120 (12)0.0021 (13)
C60.0428 (16)0.0477 (17)0.0556 (19)−0.0108 (13)0.0011 (14)0.0004 (14)

Geometric parameters (Å, °)

Br1—C131.896 (3)C7—H7A0.9300
O1—C21.249 (3)C11—C121.382 (4)
N2—C81.372 (3)C11—H11A0.9300
N2—C11.453 (3)C3—C41.389 (4)
N2—H20.851 (10)C9—C11.526 (4)
C2—N11.336 (3)C9—H9A0.9600
C2—C31.466 (4)C9—H9B0.9600
C10—C111.384 (4)C9—H9C0.9600
C10—C151.388 (4)C13—C141.368 (4)
C10—C11.538 (3)C13—C121.378 (4)
N1—C11.466 (3)C14—H14A0.9300
N1—H10.854 (10)C4—C51.375 (4)
C15—C141.381 (4)C4—H4A0.9300
C15—H15A0.9300C5—C61.391 (4)
C8—C71.397 (4)C5—H5A0.9300
C8—C31.409 (4)C12—H12A0.9300
C7—C61.376 (4)C6—H6A0.9300
C8—N2—C1120.2 (2)H9A—C9—H9B109.5
C8—N2—H2116 (2)C1—C9—H9C109.5
C1—N2—H2114 (2)H9A—C9—H9C109.5
O1—C2—N1120.5 (2)H9B—C9—H9C109.5
O1—C2—C3122.6 (2)N2—C1—N1107.0 (2)
N1—C2—C3116.8 (2)N2—C1—C9108.4 (2)
C11—C10—C15117.2 (2)N1—C1—C9107.6 (2)
C11—C10—C1121.6 (2)N2—C1—C10110.9 (2)
C15—C10—C1121.1 (2)N1—C1—C10110.8 (2)
C2—N1—C1125.0 (2)C9—C1—C10112.0 (2)
C2—N1—H1116.3 (19)C14—C13—C12120.6 (3)
C1—N1—H1118.5 (19)C14—C13—Br1120.0 (2)
C14—C15—C10121.6 (3)C12—C13—Br1119.4 (2)
C14—C15—H15A119.2C13—C14—C15119.6 (3)
C10—C15—H15A119.2C13—C14—H14A120.2
N2—C8—C7122.1 (2)C15—C14—H14A120.2
N2—C8—C3118.9 (2)C5—C4—C3121.1 (3)
C7—C8—C3118.9 (2)C5—C4—H4A119.5
C6—C7—C8120.1 (3)C3—C4—H4A119.5
C6—C7—H7A120.0C4—C5—C6119.1 (3)
C8—C7—H7A120.0C4—C5—H5A120.4
C12—C11—C10122.0 (2)C6—C5—H5A120.4
C12—C11—H11A119.0C13—C12—C11119.0 (3)
C10—C11—H11A119.0C13—C12—H12A120.5
C4—C3—C8119.6 (2)C11—C12—H12A120.5
C4—C3—C2122.1 (2)C7—C6—C5121.1 (3)
C8—C3—C2118.1 (2)C7—C6—H6A119.4
C1—C9—H9A109.5C5—C6—H6A119.4
C1—C9—H9B109.5
O1—C2—N1—C1175.6 (2)C2—N1—C1—N233.1 (3)
C3—C2—N1—C1−7.2 (4)C2—N1—C1—C9149.4 (2)
C11—C10—C15—C140.6 (4)C2—N1—C1—C10−87.8 (3)
C1—C10—C15—C14−176.5 (3)C11—C10—C1—N2−88.1 (3)
C1—N2—C8—C7−156.5 (2)C15—C10—C1—N288.9 (3)
C1—N2—C8—C327.8 (4)C11—C10—C1—N130.5 (3)
N2—C8—C7—C6−178.0 (3)C15—C10—C1—N1−152.5 (2)
C3—C8—C7—C6−2.4 (4)C11—C10—C1—C9150.7 (2)
C15—C10—C11—C12−1.2 (4)C15—C10—C1—C9−32.4 (3)
C1—C10—C11—C12175.9 (2)C12—C13—C14—C15−0.8 (5)
N2—C8—C3—C4178.1 (2)Br1—C13—C14—C15177.2 (2)
C7—C8—C3—C42.4 (4)C10—C15—C14—C130.4 (5)
N2—C8—C3—C22.7 (4)C8—C3—C4—C5−0.8 (4)
C7—C8—C3—C2−173.1 (2)C2—C3—C4—C5174.5 (3)
O1—C2—C3—C4−11.0 (4)C3—C4—C5—C6−0.8 (4)
N1—C2—C3—C4171.9 (2)C14—C13—C12—C110.3 (4)
O1—C2—C3—C8164.4 (2)Br1—C13—C12—C11−177.8 (2)
N1—C2—C3—C8−12.8 (3)C10—C11—C12—C130.7 (4)
C8—N2—C1—N1−43.0 (3)C8—C7—C6—C50.8 (5)
C8—N2—C1—C9−158.8 (2)C4—C5—C6—C70.8 (5)
C8—N2—C1—C1077.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.85 (1)2.08 (1)2.932 (3)179 (3)
N2—H2···O1ii0.85 (1)2.04 (1)2.870 (3)164 (3)

Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2270).

References

  • Alagarsamy, V., Giridhar, R., Yadav, M. R., Revathi, R., Ruckmani, K. & De Clercq, E. (2006). Indian J. Pharm. Sci.68, 532–535.
  • Alagarsamy, V., Raja, S. V. & Dhanabal, K. (2007). Bioorg. Med. Chem.15, 235–241. [PubMed]
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hwang, S. H., Rait, A., Pirollo, K. F., Zhou, Q., Yenugonda, V. M., Chinigo, G. M., Brown, M. L. & Chang, E. H. (2008). Mol. Cancer Ther.7, 559–568. [PubMed]
  • Na, Y. H., Hong, S. H., Lee, J. H., Park, W.-K., Baek, D.-J., Koh, H. Y., Cho, Y. S., Choo, H. & Pae, A. N. (2008). Bioorg. Med. Chem.16, 2570–2578. [PubMed]
  • Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem.15, 293–294.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325. [PMC free article] [PubMed]
  • Zhang, G.-F., Ma, Z. & Yang, X.-H. (2009). Acta Cryst. E65, o34–o35. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography