PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1106.
Published online 2010 April 17. doi:  10.1107/S1600536810013693
PMCID: PMC2979067

Redetermination of 1-cyclo­hexyl-3-(2-furo­yl)thio­urea

Abstract

The title compound, C12H16N2O2S, was synthesized from furoyl isothio­cyanate and cyclo­hexyl­amine in dry acetone, and the crystal structure redetermined. The thio­urea group is in the thio­amide form. The structure [Otazo-Sánchez et al. (2001 [triangle]). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218] has been redetermined in order to establish the intra- and inter­molecular inter­actions. The transcis geometry of the thio­urea group is stabilized by intra­molecular hydrogen bonding between the carbonyl and cis-thio­amide groups, resulting in a pseudo-S(6) planar ring which makes a dihedral angle of 3.24 (6)° with the 2-furoyl group and a torsion angle of −84.3 (2)° with the cyclo­hexyl group. There is also an intra­molecular hydrogen bond between the furan O atom and the other thio­amide H atom. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)O hydrogen bonds, forming chains along [010].

Related literature

For general background to the applications of aroylthio­ureas in coordination chemistry and mol­ecular electronics, see: Aly et al. (2007 [triangle]); Koch (2001 [triangle]); Duque et al. (2009 [triangle]); Estévez-Hernández et al. (2006 [triangle]). For related structures, see: Estévez-Hernández et al. (2008 [triangle]). For the synthesis, see: Otazo-Sánchez et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1106-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O2S
  • M r = 252.33
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1106-efi1.jpg
  • a = 7.2667 (5) Å
  • b = 10.2058 (7) Å
  • c = 34.239 (3) Å
  • V = 2539.3 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 100 K
  • 0.37 × 0.34 × 0.23 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008 [triangle]) T min = 0.914, T max = 0.946
  • 30412 measured reflections
  • 2232 independent reflections
  • 2175 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.072
  • S = 1.20
  • 2232 reflections
  • 160 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810013693/bq2204sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013693/bq2204Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

OE thanks CONACyT of México for research grant No. 61541. JD and HY-M thank CONACyT of México for research grants 82575 and J00.04.45.

supplementary crystallographic information

Comment

Aroylthioureas have applications in metal complexes and molecular electronics (Aly et al., 2007, Duque et al., 2009). Coordination chemistry of such derivatives is more varied than that of simple thiourea and physiochemical properties result in a number of potential technical and analytical applications (Koch, 2001, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been re-determined and the results adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of a little better quality (present refinement: R: 0.033 and wR: 0.072; previous refinement: R: 0.031 and wR: 0.082), because it was measured at low temperature (100 °K) to diminish disorder of the atoms in the unit cell. The main bond lengths and angles are are within the ranges obtained for similar compounds (Estévez-Hernández et al., 2006). The C6—S1 and C5—O1 bonds show typical double-bond character. However, the C—N bond lengths, C5—N1, C6—N1, C6—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1/C6/S1/N2) makes dihedral angle of 3.24 (6) ° with the 2-furoyl group (O1/O2/C5/C1—C4/) and a torsion angle of -84.3 (2)° with the cyclohexyl group (C6—N2—C7—C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O2 hydrogen bond (Fig.1 and Table 1). An additional intramolecular hydrogen bond N1—H1···O1 is observed. In the crystal structure symmetry related molecules are linked by N1—H1···O2 interactions to form one-dimensional chains along the b axis (Fig. 2 and Table 1).

Experimental

The title compound, (I), was synthesized according to a procedure described by Otazo-Sánchez et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with cyclohexylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p. 70-71 °C). Elemental analysis for C12H16N2O2S found: C 57.28, H 6.18, N 11.08, S 12.36 %; calculated: C 57.14, H 6.35, N 11.11, S 12.70 %.

Refinement

All H atoms were refined with Uiso(H)=1.2Ueq(C/N).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50 % probability level. The intramolecular N—H···O hydrogen bonds are shown as dashed lines.
Fig. 2.
View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C12H16N2O2SF(000) = 1072
Mr = 252.33Dx = 1.32 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9926 reflections
a = 7.2667 (5) Åθ = 2.9–25.1°
b = 10.2058 (7) ŵ = 0.25 mm1
c = 34.239 (3) ÅT = 100 K
V = 2539.3 (3) Å3Prism, colourless
Z = 80.37 × 0.34 × 0.23 mm

Data collection

Bruker APEXII CCD diffractometer2232 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
graphiteRint = 0.019
Detector resolution: 8.333 pixels mm-1θmax = 25.0°, θmin = 2.4°
[var phi] and ω scansh = −8→8
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)k = −12→12
Tmin = 0.914, Tmax = 0.946l = −40→40
30412 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.20w = 1/[σ2(Fo2) + (0.0145P)2 + 2.5358P] where P = (Fo2 + 2Fc2)/3
2232 reflections(Δ/σ)max = 0.001
160 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.02582 (6)0.83305 (4)0.380695 (12)0.01791 (12)
O10.23646 (16)0.91176 (11)0.51723 (3)0.0176 (3)
O20.20639 (16)1.18582 (10)0.45356 (3)0.0175 (3)
N10.15353 (19)0.96757 (14)0.44114 (4)0.0150 (3)
N20.0950 (2)1.08928 (14)0.38546 (4)0.0166 (3)
C10.2661 (2)1.03689 (15)0.50384 (5)0.0145 (3)
C20.3595 (2)1.10760 (16)0.53071 (5)0.0179 (4)
H2A0.39781.19630.52840.022*
C30.3890 (2)1.02359 (17)0.56302 (5)0.0188 (4)
H3A0.44991.04510.58670.023*
C40.3138 (2)0.90723 (17)0.55358 (5)0.0194 (4)
H4A0.31450.83210.570.023*
C50.2064 (2)1.07079 (15)0.46440 (5)0.0142 (3)
C60.0933 (2)0.97236 (16)0.40230 (5)0.0149 (3)
C70.0241 (2)1.11541 (16)0.34625 (5)0.0158 (3)
H7A−0.08591.05840.34180.019*
C80.1656 (2)1.08560 (17)0.31451 (5)0.0195 (4)
H8A0.27621.14080.31840.023*
H8B0.20350.99260.31620.023*
C90.0824 (3)1.11309 (17)0.27440 (5)0.0213 (4)
H9A−0.0231.05350.26990.026*
H9B0.17561.09560.2540.026*
C100.0172 (2)1.25554 (18)0.27119 (5)0.0223 (4)
H10A0.12471.31490.27260.027*
H10B−0.04341.2690.24560.027*
C11−0.1176 (2)1.28941 (17)0.30388 (5)0.0218 (4)
H11A−0.23261.23890.30020.026*
H11B−0.14861.38380.30250.026*
C12−0.0375 (2)1.25877 (16)0.34414 (5)0.0175 (4)
H12A−0.13161.27560.36440.021*
H12B0.06891.31680.34930.021*
H10.167 (3)0.894 (2)0.4510 (5)0.021*
H20.139 (3)1.1503 (19)0.3985 (6)0.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0206 (2)0.0144 (2)0.0188 (2)−0.00266 (17)−0.00123 (16)−0.00125 (16)
O10.0224 (6)0.0128 (6)0.0175 (5)−0.0014 (5)−0.0014 (5)0.0024 (5)
O20.0222 (6)0.0114 (6)0.0190 (6)0.0007 (5)−0.0007 (5)0.0007 (5)
N10.0179 (7)0.0112 (7)0.0159 (7)0.0005 (6)−0.0013 (6)0.0024 (6)
N20.0196 (7)0.0143 (7)0.0158 (7)−0.0012 (6)−0.0026 (6)−0.0005 (6)
C10.0139 (8)0.0112 (8)0.0185 (8)0.0022 (6)0.0037 (7)0.0011 (6)
C20.0188 (8)0.0137 (8)0.0213 (8)0.0013 (7)0.0014 (7)−0.0031 (7)
C30.0172 (8)0.0234 (9)0.0159 (8)0.0036 (7)−0.0010 (7)−0.0028 (7)
C40.0219 (9)0.0221 (9)0.0141 (8)0.0032 (7)−0.0005 (7)0.0036 (7)
C50.0101 (8)0.0145 (8)0.0179 (8)0.0013 (6)0.0026 (6)−0.0013 (6)
C60.0105 (8)0.0167 (8)0.0174 (8)0.0009 (6)0.0005 (6)0.0001 (6)
C70.0157 (8)0.0159 (8)0.0159 (8)−0.0002 (7)−0.0018 (7)−0.0002 (6)
C80.0195 (8)0.0181 (8)0.0211 (8)0.0036 (7)0.0016 (7)0.0005 (7)
C90.0236 (9)0.0216 (9)0.0187 (8)0.0011 (7)0.0032 (7)−0.0021 (7)
C100.0257 (9)0.0244 (9)0.0169 (8)0.0026 (8)−0.0001 (7)0.0038 (7)
C110.0251 (9)0.0207 (8)0.0196 (8)0.0057 (7)−0.0019 (7)0.0019 (7)
C120.0191 (8)0.0170 (8)0.0165 (8)0.0029 (7)−0.0002 (7)−0.0006 (6)

Geometric parameters (Å, °)

S1—C61.6760 (16)C7—C81.527 (2)
O1—C41.3665 (19)C7—C121.532 (2)
O1—C11.3739 (19)C7—H7A1
O2—C51.2313 (19)C8—C91.527 (2)
N1—C51.376 (2)C8—H8A0.99
N1—C61.401 (2)C8—H8B0.99
N1—H10.83 (2)C9—C101.533 (2)
N2—C61.325 (2)C9—H9A0.99
N2—C71.462 (2)C9—H9B0.99
N2—H20.83 (2)C10—C111.527 (2)
C1—C21.352 (2)C10—H10A0.99
C1—C51.460 (2)C10—H10B0.99
C2—C31.416 (2)C11—C121.529 (2)
C2—H2A0.95C11—H11A0.99
C3—C41.346 (2)C11—H11B0.99
C3—H3A0.95C12—H12A0.99
C4—H4A0.95C12—H12B0.99
C4—O1—C1105.71 (13)C9—C8—C7109.70 (14)
C5—N1—C6127.62 (14)C9—C8—H8A109.7
C5—N1—H1115.0 (13)C7—C8—H8A109.7
C6—N1—H1117.2 (13)C9—C8—H8B109.7
C6—N2—C7124.08 (14)C7—C8—H8B109.7
C6—N2—H2116.5 (13)H8A—C8—H8B108.2
C7—N2—H2119.4 (13)C8—C9—C10111.18 (14)
C2—C1—O1110.36 (14)C8—C9—H9A109.4
C2—C1—C5130.70 (15)C10—C9—H9A109.4
O1—C1—C5118.84 (13)C8—C9—H9B109.4
C1—C2—C3106.52 (15)C10—C9—H9B109.4
C1—C2—H2A126.7H9A—C9—H9B108
C3—C2—H2A126.7C11—C10—C9111.13 (14)
C4—C3—C2106.57 (15)C11—C10—H10A109.4
C4—C3—H3A126.7C9—C10—H10A109.4
C2—C3—H3A126.7C11—C10—H10B109.4
C3—C4—O1110.83 (15)C9—C10—H10B109.4
C3—C4—H4A124.6H10A—C10—H10B108
O1—C4—H4A124.6C10—C11—C12111.76 (14)
O2—C5—N1123.74 (15)C10—C11—H11A109.3
O2—C5—C1120.34 (14)C12—C11—H11A109.3
N1—C5—C1115.92 (14)C10—C11—H11B109.3
N2—C6—N1116.20 (14)C12—C11—H11B109.3
N2—C6—S1125.06 (12)H11A—C11—H11B107.9
N1—C6—S1118.74 (12)C11—C12—C7110.44 (13)
N2—C7—C8112.33 (13)C11—C12—H12A109.6
N2—C7—C12108.69 (13)C7—C12—H12A109.6
C8—C7—C12110.71 (13)C11—C12—H12B109.6
N2—C7—H7A108.3C7—C12—H12B109.6
C8—C7—H7A108.3H12A—C12—H12B108.1
C12—C7—H7A108.3
C4—O1—C1—C20.37 (17)C7—N2—C6—S15.0 (2)
C4—O1—C1—C5177.02 (14)C5—N1—C6—N23.2 (2)
O1—C1—C2—C3−0.65 (18)C5—N1—C6—S1−176.93 (13)
C5—C1—C2—C3−176.78 (16)C6—N2—C7—C8−84.29 (19)
C1—C2—C3—C40.68 (19)C6—N2—C7—C12152.86 (15)
C2—C3—C4—O1−0.47 (19)N2—C7—C8—C9179.24 (14)
C1—O1—C4—C30.08 (18)C12—C7—C8—C9−59.05 (18)
C6—N1—C5—O20.4 (3)C7—C8—C9—C1057.79 (19)
C6—N1—C5—C1−179.07 (15)C8—C9—C10—C11−55.4 (2)
C2—C1—C5—O2−14.7 (3)C9—C10—C11—C1253.9 (2)
O1—C1—C5—O2169.45 (14)C10—C11—C12—C7−55.05 (19)
C2—C1—C5—N1164.83 (17)N2—C7—C12—C11−178.47 (13)
O1—C1—C5—N1−11.0 (2)C8—C7—C12—C1157.71 (18)
C7—N2—C6—N1−175.11 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.83 (2)2.329 (19)2.7342 (17)110.8 (16)
N1—H1···O2i0.83 (2)2.32 (2)3.0799 (18)153.0 (18)
N2—H2···O20.83 (2)1.983 (19)2.6574 (18)138.0 (18)

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2204).

References

  • Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem.28, 73–93.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Winsonsin, USA.
  • Duque, J., Estévez-Hernández, O., Reguera, E., Ellena, J. & Corrêa, R. S. (2009). J. Coord. Chem.62, 2804–2813.
  • Estévez-Hernández, O., Duque, J., Ellena, J. & Corrêa, R. S. (2008). Acta Cryst. E64, o1157. [PMC free article] [PubMed]
  • Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta (A), 64, 961–971. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography