PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1070.
Published online 2010 April 14. doi:  10.1107/S1600536810012365
PMCID: PMC2979064

Methyl 2-ethyl-4-hydr­oxy-2H-1,2-benzo­thia­zine-3-carboxyl­ate 1,1-dioxide

Abstract

In the title compound, C12H13NO5S, the thia­zine ring adopts a half chair conformation and an intra­molecular O—H(...)O hydrogen bond generates an S(6) ring. In the crystal, the mol­ecules are linked by C—H(...)O inter­actions, leading to zigzag chains along the b axis.

Related literature

For background to the biological properties of thia­zines, see: Zia-ur-Rehman et al. (2005 [triangle], 2006 [triangle]). For related structures, see: Arshad et al. (2009a [triangle],b [triangle]). For graph-set notation, see: Bernstein, et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1070-scheme1.jpg

Experimental

Crystal data

  • C12H13NO5S
  • M r = 283.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1070-efi1.jpg
  • a = 7.2460 (6) Å
  • b = 20.548 (2) Å
  • c = 8.5710 (8) Å
  • V = 1276.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 296 K
  • 0.24 × 0.14 × 0.10 mm

Data collection

  • Bruker KAPPA APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.938, T max = 0.974
  • 14253 measured reflections
  • 3148 independent reflections
  • 1270 reflections with I > 2σ(I)
  • R int = 0.133

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.102
  • S = 0.95
  • 3148 reflections
  • 176 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1464 Friedel pairs
  • Flack parameter: 0.07 (12)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: X-SEED (Barbur, 2001 [triangle]); WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536810012365/hb5390sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012365/hb5390Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission (HEC) of Pakistan for providing a grant under the project ‘Strengthening the Materials Chemistry Laboratory at GC University, Lahore’. MNA also acknowledges the HEC for providing a fellowship under the Inter­national Research Support Initiative Program (IRSIP)

supplementary crystallographic information

Comment

Under the heading of synthesis and X-ray studies and biological evaluation of thiazine related heterocycles our group has already reported biological applications (Zia-ur-Rehman et al., 2005, 2006) and the crystal structures of 1,2-benzothiazine derivatives (Arshad et al., 2009a,b) II & III. The title compound Methyl 2-ethyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxylate 1,1-dioxide (I) is different only in H-alkylation. The hydrogen bonding interactions in I, II and III are pretty much common. The intramolecular O–H···O interaction tend to rise the six membered ring motif R11(6) (Bernstein, et al., 1995) which is almost planar with the r.m.s deviaton of 0.0156Å and iclined at dihedral angle of 25.1 (6)° & 17.5 (6)° with respect to the thiazine and benzene ring respectively. The half chair shaped thiazine ring exihibits a maximum deviation from the least square plane measure 0.347 (2)Å for S1 and 0.345 (2)Å for C1. The intermoleculear C–H···O hydrogen bonding forms zig-zag network along the b axes. The bond lngths and bond angles are compareable with the molecules II and III.

Experimental

Ethyl iodide (250 mg, 1.6 mmol) was added drop wise to the mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (350 mg, 1.37 mmol), anhydrous potassium carbonate (161 mg, 1.6 mmol) and dimethylformamide (5 ml) in a round bottom flask. Contents were stirred at room temperature for 5 h under nitrogen atmosphere and poured over ice cooled water (100 ml) resulting white precipetates, which was filtered and washed with cold water. Colourless needles of (I) were obtained by re-crystallization from a methanol solution under slow evaporation.

Figures

Fig. 1.
The molecular structure of (I) showing 50% displacement ellipsoids.
Fig. 2.
Unit cell packing for (I) showing the inter and intramolecular hydrogen bondings using dashed lines. Hydrogen atoms have been omitted for clarity.

Crystal data

C12H13NO5SF(000) = 592
Mr = 283.29Dx = 1.475 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 733 reflections
a = 7.2460 (6) Åθ = 2.6–17.3°
b = 20.548 (2) ŵ = 0.27 mm1
c = 8.5710 (8) ÅT = 296 K
V = 1276.1 (2) Å3Cut needle, colourless
Z = 40.24 × 0.14 × 0.10 mm

Data collection

Bruker KAPPA APEXII CCD diffractometer3148 independent reflections
Radiation source: fine-focus sealed tube1270 reflections with I > 2σ(I)
graphiteRint = 0.133
[var phi] and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −9→9
Tmin = 0.938, Tmax = 0.974k = −26→27
14253 measured reflectionsl = −11→11

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.054w = 1/[σ2(Fo2) + (0.0219P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max < 0.001
S = 0.95Δρmax = 0.22 e Å3
3148 reflectionsΔρmin = −0.25 e Å3
176 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0062 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1464 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.07 (12)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.19292 (16)0.06952 (6)0.49242 (15)0.0514 (4)
O10.0578 (4)0.10023 (16)0.3936 (4)0.0648 (10)
O20.1809 (4)0.00107 (13)0.5198 (4)0.0716 (10)
O30.3931 (4)0.26033 (12)0.5272 (4)0.0532 (8)
H30.44440.27090.44580.080*
O40.5638 (4)0.23848 (15)0.2618 (4)0.0563 (10)
O50.5818 (4)0.13380 (14)0.1843 (4)0.0550 (9)
N10.3974 (4)0.08716 (17)0.4241 (4)0.0413 (9)
C10.1976 (6)0.1103 (2)0.6695 (5)0.0422 (11)
C20.1285 (6)0.0824 (2)0.8054 (6)0.0536 (14)
H20.07320.04160.80270.064*
C30.1429 (6)0.1160 (3)0.9446 (6)0.0560 (15)
H3A0.10300.09701.03700.067*
C40.2163 (6)0.1776 (2)0.9459 (5)0.0589 (15)
H40.22010.20091.03890.071*
C50.2849 (6)0.2056 (2)0.8105 (6)0.0560 (14)
H50.33410.24740.81390.067*
C60.2811 (6)0.1722 (2)0.6708 (6)0.0396 (11)
C70.3701 (5)0.1955 (2)0.5296 (6)0.0406 (11)
C80.4294 (6)0.1557 (2)0.4160 (5)0.0372 (11)
C90.5296 (6)0.1805 (3)0.2822 (5)0.0471 (12)
C100.6951 (6)0.1538 (2)0.0543 (5)0.0707 (16)
H10A0.62880.1848−0.00790.106*
H10B0.72520.1165−0.00830.106*
H10C0.80660.17330.09260.106*
C110.5572 (6)0.0441 (2)0.4634 (5)0.0548 (15)
H11A0.64780.04750.38050.066*
H11B0.5143−0.00060.46570.066*
C120.6504 (6)0.0588 (3)0.6154 (7)0.0840 (19)
H12A0.69280.10310.61520.126*
H12B0.75370.03010.62900.126*
H12C0.56460.05270.69940.126*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0554 (7)0.0474 (7)0.0516 (7)−0.0144 (7)0.0019 (9)−0.0055 (8)
O10.051 (2)0.083 (3)0.060 (2)−0.0095 (18)−0.010 (2)−0.003 (2)
O20.097 (2)0.0399 (19)0.078 (3)−0.0283 (16)0.014 (2)−0.010 (2)
O30.065 (2)0.033 (2)0.061 (3)−0.0045 (14)0.0097 (19)0.0007 (19)
O40.067 (2)0.042 (2)0.059 (2)−0.0064 (17)0.0121 (19)0.0070 (18)
O50.068 (2)0.048 (2)0.050 (2)0.0000 (17)0.0208 (19)−0.0001 (19)
N10.044 (2)0.037 (2)0.043 (2)−0.0036 (17)0.0052 (18)−0.0020 (18)
C10.038 (3)0.048 (3)0.040 (3)0.000 (2)0.000 (2)−0.006 (3)
C20.038 (3)0.056 (4)0.066 (4)−0.003 (2)0.009 (3)0.005 (3)
C30.056 (3)0.062 (4)0.050 (4)0.010 (3)0.012 (3)0.008 (3)
C40.062 (3)0.075 (4)0.039 (4)0.017 (3)0.006 (3)−0.010 (3)
C50.061 (3)0.051 (3)0.056 (4)0.002 (3)0.003 (3)−0.011 (3)
C60.039 (3)0.035 (3)0.045 (3)0.002 (2)−0.001 (3)0.000 (3)
C70.044 (3)0.033 (3)0.045 (3)−0.005 (2)−0.003 (2)−0.001 (3)
C80.040 (3)0.027 (3)0.045 (3)−0.004 (2)−0.005 (2)0.002 (2)
C90.043 (3)0.058 (3)0.040 (3)−0.003 (3)−0.006 (3)−0.001 (3)
C100.086 (4)0.065 (4)0.061 (4)−0.004 (3)0.036 (3)0.002 (3)
C110.057 (3)0.037 (3)0.070 (4)0.010 (2)0.005 (3)0.010 (3)
C120.069 (4)0.102 (5)0.081 (5)0.019 (3)−0.013 (3)0.015 (4)

Geometric parameters (Å, °)

S1—O21.429 (3)C4—C51.388 (6)
S1—O11.441 (3)C4—H40.9300
S1—N11.634 (3)C5—C61.381 (6)
S1—C11.734 (5)C5—H50.9300
O3—C71.343 (4)C6—C71.452 (6)
O3—H30.8200C7—C81.343 (5)
O4—C91.229 (5)C8—C91.450 (6)
O5—C91.330 (5)C10—H10A0.9600
O5—C101.444 (5)C10—H10B0.9600
N1—C81.428 (5)C10—H10C0.9600
N1—C111.495 (5)C11—C121.499 (6)
C1—C21.392 (6)C11—H11A0.9700
C1—C61.408 (5)C11—H11B0.9700
C2—C31.383 (6)C12—H12A0.9600
C2—H20.9300C12—H12B0.9600
C3—C41.372 (6)C12—H12C0.9600
C3—H3A0.9300
O2—S1—O1119.1 (2)C1—C6—C7118.8 (4)
O2—S1—N1109.44 (18)C8—C7—O3123.6 (4)
O1—S1—N1107.97 (19)C8—C7—C6123.0 (4)
O2—S1—C1109.4 (2)O3—C7—C6113.3 (4)
O1—S1—C1108.4 (2)C7—C8—N1120.9 (4)
N1—S1—C1100.9 (2)C7—C8—C9121.3 (4)
C7—O3—H3109.5N1—C8—C9117.9 (4)
C9—O5—C10116.3 (3)O4—C9—O5123.6 (4)
C8—N1—C11117.9 (3)O4—C9—C8123.7 (4)
C8—N1—S1112.5 (3)O5—C9—C8112.7 (4)
C11—N1—S1119.4 (3)O5—C10—H10A109.5
C2—C1—C6121.3 (4)O5—C10—H10B109.5
C2—C1—S1121.8 (4)H10A—C10—H10B109.5
C6—C1—S1116.9 (4)O5—C10—H10C109.5
C3—C2—C1119.3 (4)H10A—C10—H10C109.5
C3—C2—H2120.4H10B—C10—H10C109.5
C1—C2—H2120.4N1—C11—C12115.2 (4)
C4—C3—C2119.8 (5)N1—C11—H11A108.5
C4—C3—H3A120.1C12—C11—H11A108.5
C2—C3—H3A120.1N1—C11—H11B108.5
C3—C4—C5120.9 (4)C12—C11—H11B108.5
C3—C4—H4119.5H11A—C11—H11B107.5
C5—C4—H4119.5C11—C12—H12A109.5
C6—C5—C4120.8 (4)C11—C12—H12B109.5
C6—C5—H5119.6H12A—C12—H12B109.5
C4—C5—H5119.6C11—C12—H12C109.5
C5—C6—C1117.7 (4)H12A—C12—H12C109.5
C5—C6—C7123.3 (4)H12B—C12—H12C109.5
O2—S1—N1—C8−171.2 (3)S1—C1—C6—C7−4.9 (5)
O1—S1—N1—C857.8 (3)C5—C6—C7—C8153.4 (4)
C1—S1—N1—C8−55.9 (3)C1—C6—C7—C8−21.9 (6)
O2—S1—N1—C11−26.6 (4)C5—C6—C7—O3−24.2 (6)
O1—S1—N1—C11−157.6 (3)C1—C6—C7—O3160.5 (4)
C1—S1—N1—C1188.7 (3)O3—C7—C8—N1−178.8 (4)
O2—S1—C1—C2−22.5 (4)C6—C7—C8—N13.8 (6)
O1—S1—C1—C2108.9 (4)O3—C7—C8—C92.0 (6)
N1—S1—C1—C2−137.8 (4)C6—C7—C8—C9−175.4 (4)
O2—S1—C1—C6155.2 (3)C11—N1—C8—C7−105.7 (4)
O1—S1—C1—C6−73.4 (4)S1—N1—C8—C739.5 (5)
N1—S1—C1—C639.9 (4)C11—N1—C8—C973.6 (5)
C6—C1—C2—C3−0.3 (7)S1—N1—C8—C9−141.2 (3)
S1—C1—C2—C3177.3 (3)C10—O5—C9—O44.3 (7)
C1—C2—C3—C43.3 (7)C10—O5—C9—C8−175.3 (4)
C2—C3—C4—C5−3.2 (7)C7—C8—C9—O4−1.5 (7)
C3—C4—C5—C60.0 (7)N1—C8—C9—O4179.3 (4)
C4—C5—C6—C12.9 (6)C7—C8—C9—O5178.1 (4)
C4—C5—C6—C7−172.4 (4)N1—C8—C9—O5−1.1 (5)
C2—C1—C6—C5−2.8 (6)C8—N1—C11—C1257.6 (5)
S1—C1—C6—C5179.5 (3)S1—N1—C11—C12−85.1 (4)
C2—C1—C6—C7172.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.922.628 (5)144
C4—H4···O4i0.932.553.395 (5)152
C10—H10B···O2ii0.962.523.320 (5)141

Symmetry codes: (i) x−1/2, −y+1/2, z+1; (ii) −x+1, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5390).

References

  • Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009a). Acta Cryst. E65, o3025. [PMC free article] [PubMed]
  • Arshad, M. N., Zia-ur-Rehman, M. & Khan, I. U. (2009b). Acta Cryst. E65, o3077. [PMC free article] [PubMed]
  • Barbur, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1175.
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography