PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1048.
Published online 2010 April 10. doi:  10.1107/S1600536810012419
PMCID: PMC2979063

N′-(2,4-Dichloro­benzyl­idene)-2-hydr­oxy-3-methyl­benzohydrazide

Abstract

In the title compound, C15H12Cl2N2O2, the dihedral angle between the two benzene rings is 6.3 (2)°. The mol­ecule adopts an E configuration with respect to the C=N bond. An intra­molecular O—H(...)O hydrogen bond is observed. In the crystal structure, the mol­ecules are linked through inter­molecular N—H(...)O and C—H(...)O hydrogen bonds to form chains running along [101].

Related literature

For the biological properties of hydrazone compounds, see: Patil et al. (2010 [triangle]); Cukurovali et al. (2006 [triangle]). For related structures, see: Mohd Lair et al. (2009 [triangle]); Lin & Sang (2009 [triangle]); Suleiman Gwaram et al. (2010 [triangle]); Li & Ban (2009 [triangle]); Lo & Ng (2009 [triangle]); Ning & Xu (2009 [triangle]); Zhu et al. (2009 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1048-scheme1.jpg

Experimental

Crystal data

  • C15H12Cl2N2O2
  • M r = 323.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1048-efi1.jpg
  • a = 7.137 (1) Å
  • b = 28.146 (2) Å
  • c = 8.130 (1) Å
  • β = 115.098 (1)°
  • V = 1478.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.44 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.917, T max = 0.928
  • 8543 measured reflections
  • 3211 independent reflections
  • 2439 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.130
  • S = 1.08
  • 3211 reflections
  • 195 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012419/ci5073sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012419/ci5073Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Applied Chemistry Key Subject of Anhui Province (grant No. 200802187 C). The authors thank Mr Gang Wu of Chuzhou University for his help with the crystal growth.

supplementary crystallographic information

Comment

Hydrazone compounds have been widely investigated for their biological properties (Patil et al., 2010; Cukurovali et al., 2006). Furthermore, the crystal structures of the hydrazone compounds have also attracted much attention in recent years (Mohd Lair et al., 2009; Lin & Sang, 2009; Suleiman Gwaram et al., 2010). In the present work, the title new hydrazone compound is reported.

In the title molecule (Fig. 1), the dihedral angle between the two benzene rings is 6.3 (2)°. The molecule adopts an E configuration with respect to the C═N bond. There is an intramolecular O—H···O hydrogen bond (Table 1) in the molecule. All the bond lengths are within normal ranges (Allen et al., 1987), and are comparable to those observed in related structures (Li & Ban, 2009; Lo & Ng, 2009; Ning & Xu, 2009; Zhu et al., 2009).

In the crystal structure, molecules are linked through intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) to form chains running along the [101] (Fig. 2).

Experimental

A mixture of 2,4-dichlorobenzaldehyde (0.174 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in methanol (50 ml) was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, single crystals of the title compound, suitable for X-ray diffraction, were formed.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
The molecular packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H12Cl2N2O2F(000) = 664
Mr = 323.17Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3312 reflections
a = 7.137 (1) Åθ = 2.7–26.7°
b = 28.146 (2) ŵ = 0.44 mm1
c = 8.130 (1) ÅT = 298 K
β = 115.098 (1)°Block, colourless
V = 1478.9 (3) Å30.20 × 0.20 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3211 independent reflections
Radiation source: fine-focus sealed tube2439 reflections with I > 2σ(I)
graphiteRint = 0.080
ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→9
Tmin = 0.917, Tmax = 0.928k = −35→29
8543 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0634P)2 + 0.0199P] where P = (Fo2 + 2Fc2)/3
3211 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.08171 (10)0.072034 (18)0.35298 (7)0.0675 (2)
Cl20.28271 (12)0.02969 (2)1.04608 (9)0.0896 (3)
N10.2165 (2)0.21754 (5)0.51447 (19)0.0456 (3)
N20.1732 (2)0.24652 (5)0.36590 (19)0.0461 (4)
O10.2584 (2)0.39071 (4)0.38436 (19)0.0607 (4)
H10.30240.37230.47060.091*
O20.3710 (2)0.30580 (5)0.54178 (17)0.0612 (4)
C10.1840 (3)0.13994 (6)0.6149 (2)0.0418 (4)
C20.1588 (3)0.09173 (6)0.5740 (2)0.0456 (4)
C30.1937 (3)0.05770 (7)0.7075 (3)0.0532 (5)
H30.18150.02550.67900.064*
C40.2466 (3)0.07250 (7)0.8822 (3)0.0564 (5)
C50.2684 (3)0.11985 (7)0.9281 (3)0.0571 (5)
H50.30250.12931.04700.068*
C60.2390 (3)0.15312 (7)0.7953 (2)0.0507 (4)
H60.25620.18510.82630.061*
C70.1512 (3)0.17531 (6)0.4737 (2)0.0447 (4)
H70.08140.16670.35220.054*
C80.2616 (3)0.28989 (6)0.3889 (2)0.0440 (4)
C90.2212 (2)0.31687 (6)0.2219 (2)0.0412 (4)
C100.2190 (3)0.36649 (6)0.2284 (2)0.0458 (4)
C110.1737 (3)0.39357 (7)0.0725 (3)0.0530 (5)
C120.1414 (3)0.36996 (7)−0.0855 (3)0.0598 (5)
H120.11240.3876−0.19020.072*
C130.1503 (3)0.32088 (8)−0.0946 (3)0.0595 (5)
H130.13060.3060−0.20280.071*
C140.1888 (3)0.29443 (6)0.0593 (2)0.0487 (4)
H140.19320.26150.05440.058*
C150.1625 (4)0.44689 (7)0.0806 (4)0.0719 (6)
H15A0.15340.4603−0.03120.108*
H15B0.28450.45860.17970.108*
H15C0.04250.45580.09830.108*
H20.077 (3)0.2377 (8)0.2565 (18)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1002 (5)0.0532 (3)0.0537 (3)−0.0007 (3)0.0369 (3)−0.0057 (2)
Cl20.1246 (6)0.0848 (5)0.0756 (4)0.0201 (4)0.0580 (4)0.0368 (3)
N10.0454 (8)0.0445 (8)0.0405 (7)−0.0003 (6)0.0122 (6)0.0052 (6)
N20.0480 (9)0.0424 (8)0.0379 (7)−0.0048 (6)0.0083 (6)0.0040 (6)
O10.0731 (10)0.0438 (7)0.0648 (9)−0.0015 (6)0.0290 (8)−0.0077 (6)
O20.0725 (9)0.0499 (8)0.0422 (7)−0.0099 (6)0.0060 (7)−0.0029 (6)
C10.0380 (9)0.0467 (9)0.0401 (9)0.0001 (7)0.0158 (7)0.0036 (7)
C20.0472 (10)0.0483 (10)0.0472 (9)0.0026 (7)0.0256 (8)0.0032 (7)
C30.0599 (12)0.0453 (10)0.0631 (12)0.0056 (8)0.0344 (10)0.0104 (9)
C40.0585 (12)0.0638 (13)0.0545 (11)0.0116 (9)0.0312 (10)0.0189 (9)
C50.0597 (12)0.0695 (13)0.0416 (9)0.0060 (9)0.0211 (9)0.0056 (9)
C60.0516 (11)0.0515 (11)0.0451 (10)−0.0009 (8)0.0168 (9)0.0011 (8)
C70.0437 (10)0.0457 (10)0.0409 (9)−0.0019 (7)0.0143 (8)0.0015 (7)
C80.0411 (9)0.0408 (9)0.0436 (9)0.0018 (7)0.0118 (8)0.0015 (7)
C90.0346 (8)0.0412 (9)0.0425 (9)−0.0015 (6)0.0111 (7)0.0013 (7)
C100.0369 (9)0.0419 (9)0.0550 (11)0.0006 (7)0.0159 (8)0.0032 (8)
C110.0398 (10)0.0487 (10)0.0666 (12)0.0021 (7)0.0188 (9)0.0103 (9)
C120.0507 (12)0.0641 (13)0.0593 (12)−0.0033 (9)0.0181 (10)0.0198 (10)
C130.0579 (12)0.0746 (14)0.0435 (10)−0.0112 (10)0.0191 (9)−0.0023 (9)
C140.0467 (10)0.0469 (10)0.0489 (10)−0.0041 (8)0.0167 (8)−0.0011 (8)
C150.0662 (14)0.0479 (12)0.0980 (17)0.0069 (9)0.0313 (13)0.0206 (11)

Geometric parameters (Å, °)

Cl1—C21.7319 (18)C5—H50.93
Cl2—C41.7323 (18)C6—H60.93
N1—C71.268 (2)C7—H70.93
N1—N21.3795 (19)C8—C91.474 (2)
N2—C81.350 (2)C9—C141.393 (2)
N2—H20.898 (10)C9—C101.398 (2)
O1—C101.360 (2)C10—C111.394 (3)
O1—H10.82C11—C121.376 (3)
O2—C81.2376 (19)C11—C151.506 (3)
C1—C21.391 (3)C12—C131.386 (3)
C1—C61.398 (2)C12—H120.93
C1—C71.461 (2)C13—C141.379 (3)
C2—C31.389 (2)C13—H130.93
C3—C41.371 (3)C14—H140.93
C3—H30.93C15—H15A0.96
C4—C51.375 (3)C15—H15B0.96
C5—C61.376 (3)C15—H15C0.96
C7—N1—N2113.86 (14)O2—C8—C9122.17 (16)
C8—N2—N1119.69 (14)N2—C8—C9116.17 (14)
C8—N2—H2120.2 (15)C14—C9—C10119.26 (16)
N1—N2—H2119.8 (15)C14—C9—C8121.98 (16)
C10—O1—H1109.5C10—C9—C8118.75 (15)
C2—C1—C6117.41 (16)O1—C10—C11116.74 (17)
C2—C1—C7121.03 (15)O1—C10—C9122.35 (16)
C6—C1—C7121.56 (16)C11—C10—C9120.91 (17)
C3—C2—C1121.58 (17)C12—C11—C10117.83 (17)
C3—C2—Cl1117.58 (14)C12—C11—C15122.08 (19)
C1—C2—Cl1120.84 (13)C10—C11—C15120.09 (19)
C4—C3—C2118.68 (18)C11—C12—C13122.54 (18)
C4—C3—H3120.7C11—C12—H12118.7
C2—C3—H3120.7C13—C12—H12118.7
C3—C4—C5121.67 (17)C14—C13—C12119.04 (19)
C3—C4—Cl2118.12 (16)C14—C13—H13120.5
C5—C4—Cl2120.20 (15)C12—C13—H13120.5
C4—C5—C6119.02 (18)C13—C14—C9120.33 (18)
C4—C5—H5120.5C13—C14—H14119.8
C6—C5—H5120.5C9—C14—H14119.8
C5—C6—C1121.58 (17)C11—C15—H15A109.5
C5—C6—H6119.2C11—C15—H15B109.5
C1—C6—H6119.2H15A—C15—H15B109.5
N1—C7—C1120.98 (16)C11—C15—H15C109.5
N1—C7—H7119.5H15A—C15—H15C109.5
C1—C7—H7119.5H15B—C15—H15C109.5
O2—C8—N2121.66 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.962.6689 (19)144
N2—H2···O2i0.90 (1)2.13 (1)2.9905 (19)161 (2)
C7—H7···O2i0.932.453.264 (2)146

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5073).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem.41, 201–207. [PubMed]
  • Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o876. [PMC free article] [PubMed]
  • Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650. [PMC free article] [PubMed]
  • Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o969. [PMC free article] [PubMed]
  • Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190. [PMC free article] [PubMed]
  • Ning, J.-H. & Xu, X.-W. (2009). Acta Cryst. E65, o905–o906. [PMC free article] [PubMed]
  • Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem.63, 688–699.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suleiman Gwaram, N., Khaledi, H., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2010). Acta Cryst. E66, o721. [PMC free article] [PubMed]
  • Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography