PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m544.
Published online 2010 April 21. doi:  10.1107/S1600536810013759
PMCID: PMC2979061

{1,3-Bis[(diphenyl­phosphanyl-κP)­oxy]propane}dicarbonyl­iron(0)

Abstract

The structure of the title compound, [Fe(C27H26O2P2)(CO)2], exhibits a distorted tetra­hedral coordination [bond angle range = 96.31 (12)–119.37 (4)°], comprising two P-atom donors from the chelating 1,3-bis­[(diphenyl­phosphan­yl)­oxy]propane ligand [Fe—P = 2.1414 (10) and 2.1462 (10) Å] and two carbonyl ligands [Fe—C = 1.763 (4) and 1.765 (3) Å].

Related literature

For a related carbonyl­ation reaction, see: Klein et al. (2003 [triangle]). For general background to metal complexes with the 1,3-bis­[(diphenyl­phosphino)­oxy]propane ligand, see: Pandarus et al. (2008 [triangle]); Xu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m544-scheme1.jpg

Experimental

Crystal data

  • [Fe(C27H26O2P2)(CO)2]
  • M r = 556.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m544-efi1.jpg
  • a = 12.589 (3) Å
  • b = 15.191 (3) Å
  • c = 14.384 (3) Å
  • β = 106.14 (3)°
  • V = 2642.4 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 293 K
  • 0.27 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.828, T max = 0.899
  • 17176 measured reflections
  • 5590 independent reflections
  • 3864 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.094
  • S = 0.99
  • 5590 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810013759/zs2034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810013759/zs2034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge support by NSF China (No. 20872080/20772072).

supplementary crystallographic information

Comment

In recent years, the three-coordinated phosphine-based pincer (PCP) ligands with an aliphatic backbone have attracted much attention (Pandarus et al., 2008). Sometimes the ligand backbone has been found to be too flexibile to be metallated. We have reported that the central sp3 C—H bond of (Ph2POCH2)2CH2 could be activated by Fe(PMe3)4Me2 to afford metallated PCP pincer compounds at room temperature (Xu et al., 2009). When a solution of (Ph2POCH2)2CH2 was mixed with Fe(PMe3)4, and then placed under an atmosphere of CO at 273 K, the title compound [1,3-bis((diphenylphosphino)oxy)propane]bis(carbonyl)iron(0) (I) was formed. In this, the PMe3 ligands were replaced by CO. A similar carbonylation reaction was reported by Klein et al. (2003).

The molecular structure of the title compound is shown in Fig. 1. The Fe is coordinated by two phosphane P atoms from the chelating (Ph2POCH2)2CH2 ligand and two carbonyl C atoms, the complex exhibiting a distorted tetrahedral stereochemistry [Fe–P, 2.1414 (10), 2.1462 (10) Å; Fe–C, 1.763 (4), 1.765 (3) Å; bond angle range, 96.31 (12)–119.37 (4)°].

Experimental

Standard vacuum techniques were used in manipulations of volatile and air sensitive material. The title compound was synthesized by combining a solution of (Ph2POCH2)2CH2 (406 mg, 0.90 mmol) in 20 ml of diethylether with Fe(PMe3)4 (324 mg, 0.90 mmol) in 20 ml of diethylether at 273 K, at which time the color changed from yellow to red. After stirring for 12 h, the solution was placed under an atmosphere of CO at 273 K for a further 12 h, resulting in a color change back to yellow, after which the solution was concentrated and filtered. Yellow crystals (310 mg, 62% yield) were obtained by recrystallization from a diethylether solution maintained at 253 K.

Refinement

Hydrogen atoms were included in the refinement at calculated positions (C–Haromatic = 0.93 Å; C–Haliphatic = 0.97 Å) and treated as riding models, with Uiso(H) = 1.2 (1.5 for alkyl groups) times Ueq(C).

Figures

Fig. 1.
Atom numbering scheme for (I) with non-H atoms shown as 30% probability displacement ellipsoids.

Crystal data

[Fe(C27H26O2P2)(CO)2]F(000) = 1152
Mr = 556.29Dx = 1.398 Mg m3
Monoclinic, P21/nMelting point: 385 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.589 (3) ÅCell parameters from 17176 reflections
b = 15.191 (3) Åθ = 1.9–26.8°
c = 14.384 (3) ŵ = 0.73 mm1
β = 106.14 (3)°T = 293 K
V = 2642.4 (11) Å3Block, yellow
Z = 40.27 × 0.20 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer5590 independent reflections
Radiation source: fine-focus sealed tube3864 reflections with I > 2σ(I)
graphiteRint = 0.080
[var phi] and ω scansθmax = 26.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→14
Tmin = 0.828, Tmax = 0.899k = −19→15
17176 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3
5590 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.86496 (4)0.14441 (3)0.60132 (3)0.01955 (11)
P10.80915 (7)0.11051 (5)0.72478 (5)0.02269 (17)
P20.94395 (6)0.26876 (5)0.59809 (5)0.02229 (17)
C10.6609 (3)0.1013 (2)0.7101 (2)0.0233 (6)
C20.5887 (3)0.0808 (2)0.6205 (2)0.0310 (7)
H20.61570.07500.56690.037*
C30.4769 (3)0.0689 (3)0.6105 (2)0.0363 (8)
H30.42960.05450.55030.044*
C40.4353 (3)0.0783 (2)0.6893 (2)0.0337 (8)
H40.36030.07020.68250.040*
C50.5061 (3)0.0997 (2)0.7781 (2)0.0314 (7)
H50.47820.10690.83110.038*
C60.6177 (3)0.1107 (2)0.7895 (2)0.0281 (7)
H60.66450.12450.85010.034*
C70.8558 (3)0.0063 (2)0.7873 (2)0.0262 (7)
C80.8773 (3)−0.0665 (2)0.7358 (2)0.0310 (7)
H80.8735−0.06050.67060.037*
C90.9041 (3)−0.1472 (2)0.7806 (2)0.0361 (8)
H90.9192−0.19490.74580.043*
C100.9086 (3)−0.1566 (2)0.8773 (2)0.0356 (8)
H100.9250−0.21120.90710.043*
C110.8887 (3)−0.0852 (2)0.9300 (2)0.0342 (8)
H110.8927−0.09160.99520.041*
C120.8629 (3)−0.0040 (2)0.8852 (2)0.0290 (7)
H120.85020.04400.92080.035*
C140.9435 (3)0.2174 (2)0.8523 (2)0.0280 (7)
H14A0.99130.19690.81430.034*
H14B0.97490.19850.91880.034*
C150.9355 (3)0.3167 (2)0.8480 (2)0.0276 (7)
H15A0.88590.33620.88470.033*
H15B1.00790.34160.87790.033*
C160.8941 (3)0.3508 (2)0.7457 (2)0.0267 (6)
H16A0.82380.32360.71350.032*
H16B0.88340.41400.74640.032*
C180.8717 (2)0.3468 (2)0.5048 (2)0.0246 (6)
C190.8872 (3)0.4367 (2)0.5213 (2)0.0295 (7)
H190.93620.45640.57850.035*
C200.8308 (3)0.4973 (2)0.4537 (2)0.0347 (8)
H200.84090.55720.46620.042*
C210.7590 (3)0.4685 (2)0.3673 (2)0.0350 (8)
H210.72130.50900.32150.042*
C220.7440 (3)0.3796 (3)0.3498 (2)0.0352 (8)
H220.69650.36020.29180.042*
C230.7994 (3)0.3186 (2)0.4183 (2)0.0294 (7)
H230.78810.25870.40620.035*
C241.0822 (3)0.2664 (2)0.5825 (2)0.0241 (6)
C251.1746 (3)0.2932 (2)0.6554 (2)0.0309 (7)
H251.16580.31470.71340.037*
C261.2795 (3)0.2883 (3)0.6426 (3)0.0376 (8)
H261.34080.30580.69200.045*
C271.2931 (3)0.2572 (3)0.5554 (3)0.0401 (9)
H271.36320.25450.54600.048*
C281.2025 (3)0.2307 (3)0.4837 (2)0.0412 (9)
H281.21150.20970.42560.049*
C291.0982 (3)0.2345 (3)0.4964 (2)0.0365 (8)
H291.03770.21560.44710.044*
C300.7896 (3)0.1023 (2)0.4877 (2)0.0328 (8)
C310.9862 (3)0.0802 (2)0.6249 (2)0.0351 (8)
O10.7392 (2)0.0776 (2)0.41268 (18)0.0520 (7)
O21.0661 (2)0.0395 (2)0.6391 (2)0.0513 (7)
O30.83459 (18)0.18051 (15)0.81476 (13)0.0262 (5)
O40.97462 (18)0.33011 (14)0.69448 (14)0.0261 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0221 (2)0.0190 (2)0.02022 (18)−0.0018 (2)0.01025 (15)−0.00077 (17)
P10.0277 (4)0.0196 (4)0.0234 (3)0.0002 (3)0.0115 (3)0.0013 (3)
P20.0239 (4)0.0228 (4)0.0225 (3)−0.0020 (3)0.0104 (3)−0.0002 (3)
C10.0275 (17)0.0175 (15)0.0284 (14)0.0019 (13)0.0136 (12)0.0040 (12)
C20.0341 (19)0.0316 (18)0.0306 (15)−0.0026 (15)0.0145 (13)−0.0005 (13)
C30.033 (2)0.039 (2)0.0369 (17)−0.0055 (16)0.0100 (14)−0.0038 (15)
C40.0288 (19)0.0318 (19)0.0442 (18)−0.0003 (15)0.0163 (14)0.0019 (15)
C50.0348 (19)0.0283 (18)0.0369 (16)0.0054 (15)0.0198 (14)0.0042 (14)
C60.0331 (18)0.0277 (17)0.0263 (14)0.0038 (15)0.0130 (13)0.0050 (12)
C70.0248 (17)0.0256 (17)0.0292 (15)−0.0013 (14)0.0094 (12)0.0011 (12)
C80.0336 (19)0.0287 (19)0.0332 (16)−0.0018 (15)0.0132 (14)0.0005 (13)
C90.0334 (19)0.0242 (17)0.0494 (18)0.0038 (16)0.0095 (15)−0.0026 (16)
C100.0270 (18)0.030 (2)0.0446 (18)0.0009 (15)0.0011 (14)0.0128 (15)
C110.0318 (19)0.035 (2)0.0344 (16)0.0019 (16)0.0061 (14)0.0073 (14)
C120.0289 (18)0.0275 (18)0.0310 (15)0.0014 (14)0.0090 (13)0.0025 (13)
C140.0313 (17)0.0315 (18)0.0215 (13)0.0009 (15)0.0079 (12)0.0011 (12)
C150.0315 (18)0.0294 (17)0.0242 (14)−0.0069 (14)0.0113 (12)−0.0064 (12)
C160.0303 (17)0.0236 (16)0.0300 (14)0.0009 (15)0.0144 (12)−0.0033 (13)
C180.0249 (16)0.0243 (16)0.0281 (14)0.0008 (14)0.0131 (12)0.0022 (12)
C190.0320 (19)0.0294 (18)0.0294 (15)−0.0067 (14)0.0121 (13)−0.0010 (13)
C200.045 (2)0.0235 (17)0.0374 (17)−0.0017 (16)0.0145 (15)0.0024 (14)
C210.038 (2)0.032 (2)0.0370 (17)0.0044 (16)0.0142 (15)0.0112 (15)
C220.0351 (19)0.041 (2)0.0287 (15)−0.0011 (16)0.0078 (13)0.0003 (13)
C230.0353 (19)0.0239 (16)0.0292 (15)−0.0013 (14)0.0094 (13)−0.0004 (12)
C240.0267 (16)0.0215 (15)0.0277 (14)0.0013 (13)0.0137 (12)0.0072 (12)
C250.0308 (18)0.0331 (19)0.0283 (15)0.0019 (15)0.0075 (13)0.0037 (13)
C260.0234 (17)0.040 (2)0.0465 (19)0.0029 (16)0.0047 (14)0.0070 (16)
C270.0310 (19)0.045 (2)0.051 (2)0.0065 (17)0.0230 (16)0.0102 (17)
C280.036 (2)0.056 (3)0.0379 (18)0.0045 (19)0.0204 (15)0.0033 (16)
C290.0315 (19)0.048 (2)0.0340 (16)0.0007 (17)0.0149 (14)−0.0026 (15)
C300.0326 (19)0.0322 (19)0.0375 (17)−0.0062 (16)0.0164 (14)−0.0004 (14)
C310.035 (2)0.0329 (19)0.0398 (17)−0.0043 (17)0.0143 (15)−0.0019 (14)
O10.0560 (18)0.0581 (19)0.0394 (14)−0.0176 (15)0.0092 (12)−0.0174 (13)
O20.0384 (16)0.0501 (18)0.0686 (18)0.0134 (14)0.0201 (13)0.0018 (14)
O30.0305 (12)0.0251 (11)0.0260 (10)−0.0031 (10)0.0126 (9)−0.0013 (8)
O40.0270 (11)0.0290 (13)0.0264 (10)−0.0060 (9)0.0141 (8)−0.0047 (8)

Geometric parameters (Å, °)

Fe1—C311.763 (4)C14—C151.513 (5)
Fe1—C301.765 (3)C14—H14A0.9700
Fe1—P22.1414 (10)C14—H14B0.9700
Fe1—P12.1462 (10)C15—C161.509 (4)
P1—O31.636 (2)C15—H15A0.9700
P1—C11.824 (3)C15—H15B0.9700
P1—C71.834 (3)C16—O41.443 (4)
P2—O41.625 (2)C16—H16A0.9700
P2—C241.816 (3)C16—H16B0.9700
P2—C181.832 (3)C18—C231.389 (4)
C1—C21.390 (4)C18—C191.390 (5)
C1—C61.402 (4)C19—C201.382 (5)
C2—C31.387 (5)C19—H190.9300
C2—H20.9300C20—C211.389 (5)
C3—C41.382 (5)C20—H200.9300
C3—H30.9300C21—C221.377 (5)
C4—C51.378 (5)C21—H210.9300
C4—H40.9300C22—C231.391 (5)
C5—C61.378 (5)C22—H220.9300
C5—H50.9300C23—H230.9300
C6—H60.9300C24—C251.394 (4)
C7—C121.395 (4)C24—C291.395 (4)
C7—C81.399 (5)C25—C261.386 (5)
C8—C91.382 (5)C25—H250.9300
C8—H80.9300C26—C271.395 (5)
C9—C101.385 (5)C26—H260.9300
C9—H90.9300C27—C281.369 (5)
C10—C111.385 (5)C27—H270.9300
C10—H100.9300C28—C291.377 (5)
C11—C121.387 (5)C28—H280.9300
C11—H110.9300C29—H290.9300
C12—H120.9300C30—O11.152 (4)
C14—O31.440 (4)C31—O21.150 (4)
C31—Fe1—C30101.01 (16)C15—C14—H14A109.9
C31—Fe1—P296.31 (12)O3—C14—H14B109.9
C30—Fe1—P2115.62 (12)C15—C14—H14B109.9
C31—Fe1—P199.98 (12)H14A—C14—H14B108.3
C30—Fe1—P1117.64 (11)C16—C15—C14112.6 (2)
P2—Fe1—P1119.37 (4)C16—C15—H15A109.1
O3—P1—C196.34 (13)C14—C15—H15A109.1
O3—P1—C7101.98 (13)C16—C15—H15B109.1
C1—P1—C799.68 (14)C14—C15—H15B109.1
O3—P1—Fe1117.47 (9)H15A—C15—H15B107.8
C1—P1—Fe1118.84 (10)O4—C16—C15108.8 (2)
C7—P1—Fe1118.60 (11)O4—C16—H16A109.9
O4—P2—C2496.22 (13)C15—C16—H16A109.9
O4—P2—C18101.85 (13)O4—C16—H16B109.9
C24—P2—C18102.69 (14)C15—C16—H16B109.9
O4—P2—Fe1119.27 (9)H16A—C16—H16B108.3
C24—P2—Fe1116.88 (11)C23—C18—C19118.8 (3)
C18—P2—Fe1116.62 (11)C23—C18—P2121.6 (3)
C2—C1—C6118.4 (3)C19—C18—P2119.6 (2)
C2—C1—P1120.6 (2)C20—C19—C18120.9 (3)
C6—C1—P1120.9 (2)C20—C19—H19119.6
C3—C2—C1120.6 (3)C18—C19—H19119.6
C3—C2—H2119.7C19—C20—C21119.9 (3)
C1—C2—H2119.7C19—C20—H20120.0
C4—C3—C2120.4 (3)C21—C20—H20120.0
C4—C3—H3119.8C22—C21—C20119.6 (3)
C2—C3—H3119.8C22—C21—H21120.2
C5—C4—C3119.3 (3)C20—C21—H21120.2
C5—C4—H4120.4C21—C22—C23120.5 (3)
C3—C4—H4120.4C21—C22—H22119.7
C6—C5—C4121.0 (3)C23—C22—H22119.7
C6—C5—H5119.5C18—C23—C22120.2 (3)
C4—C5—H5119.5C18—C23—H23119.9
C5—C6—C1120.3 (3)C22—C23—H23119.9
C5—C6—H6119.9C25—C24—C29118.3 (3)
C1—C6—H6119.9C25—C24—P2122.0 (2)
C12—C7—C8118.5 (3)C29—C24—P2119.8 (2)
C12—C7—P1120.9 (3)C26—C25—C24120.7 (3)
C8—C7—P1120.4 (2)C26—C25—H25119.6
C9—C8—C7120.9 (3)C24—C25—H25119.6
C9—C8—H8119.6C25—C26—C27119.9 (3)
C7—C8—H8119.6C25—C26—H26120.1
C8—C9—C10119.8 (3)C27—C26—H26120.1
C8—C9—H9120.1C28—C27—C26119.5 (3)
C10—C9—H9120.1C28—C27—H27120.3
C9—C10—C11120.3 (3)C26—C27—H27120.3
C9—C10—H10119.8C27—C28—C29120.9 (3)
C11—C10—H10119.8C27—C28—H28119.5
C10—C11—C12119.8 (3)C29—C28—H28119.5
C10—C11—H11120.1C28—C29—C24120.7 (3)
C12—C11—H11120.1C28—C29—H29119.6
C11—C12—C7120.6 (3)C24—C29—H29119.6
C11—C12—H12119.7O1—C30—Fe1177.8 (3)
C7—C12—H12119.7O2—C31—Fe1178.6 (3)
O3—C14—C15109.1 (3)C14—O3—P1120.4 (2)
O3—C14—H14A109.9C16—O4—P2121.75 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2034).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Klein, H. F., Beck, R., Flörke, U. & Haupt, H. J. (2003). Eur. J. Inorg. Chem. pp. 853–862.
  • Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756–4761. [PubMed]
  • Sheldrick, G. M. (1996). University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, G., Sun, H. & Li, X. (2009). Organometallics, 28, 6090–6095.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography