PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1059.
Published online 2010 April 14. doi:  10.1107/S1600536810012663
PMCID: PMC2979055

N-(2,4-Dimethyl­phen­yl)-2,4-dimethyl­benzene­sulfonamide

Abstract

In the crystal structure of the title compound, C16H19NO2S, the mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of 66.5 (2)°. The dihedral angle between the sulfonyl and aniline benzene rings in the mol­ecule is 41.0 (1)°. The crystal structure features inversion dimers linked by pairs of N—H(...)O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006 [triangle]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009a [triangle],b [triangle]); Nirmala et al. (2010 [triangle]). For related structures, see: Gelbrich et al. (2007 [triangle]); Perlovich et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1059-scheme1.jpg

Experimental

Crystal data

  • C16H19NO2S
  • M r = 289.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1059-efi1.jpg
  • a = 8.225 (1) Å
  • b = 8.423 (1) Å
  • c = 10.992 (2) Å
  • α = 85.58 (2)°
  • β = 88.97 (2)°
  • γ = 84.43 (1)°
  • V = 755.62 (19) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 1.91 mm−1
  • T = 299 K
  • 0.40 × 0.38 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.516, T max = 0.647
  • 2899 measured reflections
  • 2689 independent reflections
  • 2419 reflections with I > 2σ(I)
  • R int = 0.026
  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.282
  • S = 1.36
  • 2689 reflections
  • 188 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.50 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012663/bq2205sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012663/bq2205Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

In the present work, as part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009a,b; Nirmala et al., 2010), the structure of 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule in (I) is bent at the S atom with the C—SO2—NH—C torsion angle of 66.5 (2)°, compared to the values of 70.1 (2) and -66.0 (2)° in the two independent molecules of 2,4-dimethyl-N-(2,3-dimethylphenyl)benzenesulfonamide (II) (Nirmala et al., 2010), 53.9 (2)° in 2,4-dimethyl-N-(3,5-dimethylphenyl)benzenesulfonamide (III) (Gowda et al., 2009b) and 46.1 (3)° (glide image of molecule 1) and 47.7 (3)° (molecule 2) in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (IV)(Gowda et al., 2009a).

The sulfonyl and the anilino benzene rings in (I) are tilted relative to each other by 41.0 (1)°, compared to the values of 41.5 (1) and 43.8 (1)° in the two molecules of (II), 82.1 (1)° in (III) and 67.5 (1)° (molecule 1) and 72.9 (1)° (molecule 2) in (IV),

The remaining bond parameters in (I) are similar to those observed in (II), (III), (IV) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) through pairs of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of m-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 2,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dimethyl-N-(2,4-dimethylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). Prism like brown single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.
Molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Molecular packing of (I), with hydrogen bonding shown as dashed lines.

Crystal data

C16H19NO2SZ = 2
Mr = 289.38F(000) = 308
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 8.225 (1) ÅCell parameters from 25 reflections
b = 8.423 (1) Åθ = 7.8–18.8°
c = 10.992 (2) ŵ = 1.91 mm1
α = 85.58 (2)°T = 299 K
β = 88.97 (2)°Prism, brown
γ = 84.43 (1)°0.40 × 0.38 × 0.25 mm
V = 755.62 (19) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer2419 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
graphiteθmax = 67.1°, θmin = 4.0°
ω/2θ scansh = −9→9
Absorption correction: ψ scan (North et al., 1968)k = −10→10
Tmin = 0.516, Tmax = 0.647l = −13→1
2899 measured reflections3 standard reflections every 120 min
2689 independent reflections intensity decay: 1.5%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.282H atoms treated by a mixture of independent and constrained refinement
S = 1.36w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max = 0.002
188 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = −0.50 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4299 (4)0.5647 (3)0.7203 (3)0.0402 (7)
C20.3552 (4)0.6498 (4)0.6195 (3)0.0452 (8)
C30.4587 (5)0.7247 (5)0.5349 (3)0.0558 (9)
H30.41250.78090.46580.067*
C40.6233 (5)0.7190 (5)0.5491 (3)0.0544 (9)
C50.6937 (5)0.6310 (5)0.6489 (3)0.0555 (9)
H50.80640.62300.65860.067*
C60.5975 (4)0.5549 (4)0.7343 (3)0.0482 (8)
H60.64550.49650.80190.058*
C70.1553 (3)0.7468 (3)0.9002 (2)0.0349 (7)
C80.2064 (4)0.8968 (3)0.8660 (3)0.0376 (7)
C90.0873 (4)1.0200 (4)0.8323 (3)0.0440 (7)
H90.11861.12170.81090.053*
C10−0.0762 (4)0.9960 (4)0.8295 (3)0.0466 (8)
C11−0.1231 (4)0.8477 (4)0.8650 (3)0.0507 (8)
H11−0.23320.83100.86490.061*
C12−0.0100 (4)0.7242 (4)0.9006 (3)0.0462 (8)
H12−0.04360.62430.92530.055*
C130.1763 (5)0.6667 (6)0.5928 (4)0.0643 (10)
H13A0.11630.70440.66230.077*
H13B0.14300.56480.57550.077*
H13C0.15490.74190.52350.077*
C140.7272 (7)0.8078 (6)0.4575 (4)0.0820 (14)
H14A0.65870.86460.39560.098*
H14B0.80480.73290.42060.098*
H14C0.78430.88230.49810.098*
C150.3816 (4)0.9290 (4)0.8660 (3)0.0517 (9)
H15A0.43330.89780.79130.062*
H15B0.43560.86890.93390.062*
H15C0.38871.04110.87250.062*
C16−0.1989 (5)1.1362 (5)0.7893 (4)0.0717 (12)
H16A−0.14201.22190.75190.086*
H16B−0.25951.17230.85910.086*
H16C−0.27261.10290.73170.086*
N10.2700 (3)0.6121 (3)0.9369 (2)0.0397 (7)
H1N0.363 (3)0.632 (4)0.966 (3)0.048*
O10.4329 (3)0.3611 (3)0.9106 (2)0.0548 (7)
O20.1751 (3)0.4227 (3)0.7989 (2)0.0556 (7)
S10.32074 (8)0.47490 (7)0.84308 (6)0.0403 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0449 (16)0.0342 (15)0.0406 (15)0.0018 (12)0.0016 (12)−0.0038 (12)
C20.0482 (17)0.0451 (17)0.0413 (16)0.0014 (13)−0.0062 (13)−0.0042 (13)
C30.068 (2)0.059 (2)0.0377 (16)0.0034 (17)−0.0005 (15)0.0034 (14)
C40.059 (2)0.059 (2)0.0459 (17)−0.0082 (16)0.0117 (15)−0.0051 (15)
C50.0485 (18)0.063 (2)0.055 (2)−0.0048 (16)0.0004 (15)−0.0073 (17)
C60.0426 (16)0.054 (2)0.0461 (17)0.0023 (13)−0.0020 (13)−0.0024 (14)
C70.0395 (14)0.0278 (13)0.0361 (14)0.0007 (10)−0.0008 (11)0.0006 (10)
C80.0445 (16)0.0305 (14)0.0379 (14)−0.0048 (11)−0.0019 (11)−0.0021 (11)
C90.0565 (18)0.0344 (15)0.0394 (15)−0.0006 (13)−0.0021 (13)0.0030 (12)
C100.0490 (17)0.0496 (18)0.0382 (15)0.0114 (14)−0.0028 (13)−0.0039 (13)
C110.0373 (15)0.060 (2)0.0546 (19)−0.0009 (14)0.0004 (13)−0.0073 (15)
C120.0450 (17)0.0396 (16)0.0548 (18)−0.0091 (13)0.0068 (14)−0.0035 (13)
C130.051 (2)0.083 (3)0.057 (2)0.0006 (18)−0.0143 (16)0.0042 (19)
C140.093 (3)0.085 (3)0.068 (3)−0.021 (3)0.028 (2)0.003 (2)
C150.0484 (18)0.0418 (18)0.066 (2)−0.0129 (14)−0.0079 (15)0.0005 (15)
C160.066 (2)0.071 (3)0.069 (2)0.027 (2)−0.0035 (19)0.011 (2)
N10.0447 (14)0.0315 (13)0.0412 (13)0.0011 (11)−0.0033 (10)0.0035 (10)
O10.0646 (15)0.0334 (12)0.0617 (15)0.0110 (11)−0.0033 (12)0.0080 (10)
O20.0544 (14)0.0451 (13)0.0700 (16)−0.0142 (11)−0.0020 (11)−0.0086 (11)
S10.0460 (6)0.0271 (6)0.0469 (6)−0.0010 (3)−0.0018 (4)0.0014 (3)

Geometric parameters (Å, °)

C1—C61.384 (4)C10—C161.520 (4)
C1—C21.391 (4)C11—C121.365 (5)
C1—S11.769 (3)C11—H110.9300
C2—C31.404 (5)C12—H120.9300
C2—C131.497 (5)C13—H13A0.9600
C3—C41.362 (6)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.380 (5)C14—H14A0.9600
C4—C141.510 (5)C14—H14B0.9600
C5—C61.378 (5)C14—H14C0.9600
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C121.390 (4)C15—H15C0.9600
C7—C81.392 (4)C16—H16A0.9600
C7—N11.441 (3)C16—H16B0.9600
C8—C91.389 (4)C16—H16C0.9600
C8—C151.492 (4)N1—S11.627 (3)
C9—C101.380 (5)N1—H1N0.869 (19)
C9—H90.9300O1—S11.436 (2)
C10—C111.369 (5)O2—S11.421 (3)
C6—C1—C2121.0 (3)C7—C12—H12119.8
C6—C1—S1115.3 (2)C2—C13—H13A109.5
C2—C1—S1123.6 (2)C2—C13—H13B109.5
C1—C2—C3116.4 (3)H13A—C13—H13B109.5
C1—C2—C13126.0 (3)C2—C13—H13C109.5
C3—C2—C13117.6 (3)H13A—C13—H13C109.5
C4—C3—C2123.2 (3)H13B—C13—H13C109.5
C4—C3—H3118.4C4—C14—H14A109.5
C2—C3—H3118.4C4—C14—H14B109.5
C3—C4—C5118.8 (3)H14A—C14—H14B109.5
C3—C4—C14120.7 (4)C4—C14—H14C109.5
C5—C4—C14120.5 (4)H14A—C14—H14C109.5
C6—C5—C4120.2 (3)H14B—C14—H14C109.5
C6—C5—H5119.9C8—C15—H15A109.5
C4—C5—H5119.9C8—C15—H15B109.5
C5—C6—C1120.4 (3)H15A—C15—H15B109.5
C5—C6—H6119.8C8—C15—H15C109.5
C1—C6—H6119.8H15A—C15—H15C109.5
C12—C7—C8120.2 (3)H15B—C15—H15C109.5
C12—C7—N1118.3 (3)C10—C16—H16A109.5
C8—C7—N1121.5 (3)C10—C16—H16B109.5
C9—C8—C7117.7 (3)H16A—C16—H16B109.5
C9—C8—C15119.7 (3)C10—C16—H16C109.5
C7—C8—C15122.6 (3)H16A—C16—H16C109.5
C10—C9—C8122.0 (3)H16B—C16—H16C109.5
C10—C9—H9119.0C7—N1—S1120.14 (19)
C8—C9—H9119.0C7—N1—H1N118 (3)
C11—C10—C9119.0 (3)S1—N1—H1N103 (2)
C11—C10—C16122.1 (3)O2—S1—O1118.85 (15)
C9—C10—C16118.9 (3)O2—S1—N1108.21 (14)
C12—C11—C10120.7 (3)O1—S1—N1104.49 (13)
C12—C11—H11119.6O2—S1—C1109.49 (15)
C10—C11—H11119.6O1—S1—C1107.90 (14)
C11—C12—C7120.4 (3)N1—S1—C1107.29 (13)
C11—C12—H12119.8
C6—C1—C2—C3−0.4 (5)C8—C9—C10—C112.3 (5)
S1—C1—C2—C3174.9 (2)C8—C9—C10—C16−178.9 (3)
C6—C1—C2—C13178.8 (3)C9—C10—C11—C12−1.2 (5)
S1—C1—C2—C13−5.9 (5)C16—C10—C11—C12−180.0 (3)
C1—C2—C3—C4−1.1 (5)C10—C11—C12—C7−0.6 (5)
C13—C2—C3—C4179.6 (4)C8—C7—C12—C111.5 (5)
C2—C3—C4—C52.4 (6)N1—C7—C12—C11−179.1 (3)
C2—C3—C4—C14−177.4 (3)C12—C7—N1—S177.6 (3)
C3—C4—C5—C6−2.1 (6)C8—C7—N1—S1−103.0 (3)
C14—C4—C5—C6177.7 (4)C7—N1—S1—O2−51.5 (3)
C4—C5—C6—C10.6 (5)C7—N1—S1—O1−179.1 (2)
C2—C1—C6—C50.7 (5)C7—N1—S1—C166.5 (2)
S1—C1—C6—C5−175.0 (2)C6—C1—S1—O2−151.7 (3)
C12—C7—C8—C9−0.4 (4)C2—C1—S1—O232.7 (3)
N1—C7—C8—C9−179.8 (2)C6—C1—S1—O1−21.0 (3)
C12—C7—C8—C15178.9 (3)C2—C1—S1—O1163.4 (3)
N1—C7—C8—C15−0.6 (4)C6—C1—S1—N191.0 (3)
C7—C8—C9—C10−1.5 (4)C2—C1—S1—N1−84.5 (3)
C15—C8—C9—C10179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.87 (2)2.19 (2)3.024 (4)161 (3)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2205).

References

  • Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [PMC free article] [PubMed]
  • Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o3275. [PMC free article] [PubMed]
  • Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2010). Acta Cryst. E66, o1017. [PMC free article] [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  • Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography