PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1037–o1038.
Published online 2010 April 10. doi:  10.1107/S160053681001216X
PMCID: PMC2979054

1-[(E)-(3,4-Dimethyl­isoxazol-5-yl)imino­meth­yl]-2-naphthol

Abstract

The title Schiff base compound, C16H14N2O2, has been synthesized by the reaction of 5-amino-3,4-dimethyl­isoxazole and 2-hydr­oxy-1-naphthaldehyde. The dihedral angle between the isoxazole ring and the napthyl ring system is 3.29 (7)°. The mol­ecule adopts an E configuration about the central C=N double bond. Intra­molecular O—H(...)N hydrogen bonding generates an S(6) ring motif. In the crystal structure, π–π inter­actions are observed involving the isoxazole ring and the substituted benzene ring of the naphthyl unit, with centroid–centroid distances of 3.5200 (10) Å.

Related literature

For related background and the biological activity of isoxazol, see: Howell & Kimmel (2008 [triangle]); Bartlett & Schleyerbach (1985 [triangle]); Lamani et al. (2009 [triangle]); Jayashankar et al. (2009 [triangle]). For related structures, see: Alvarez-Thon et al. (2006 [triangle]); Tahir et al. (2008 [triangle]); Shad et al. (2008 [triangle]); Fun et al. (2010 [triangle]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1037-scheme1.jpg

Experimental

Crystal data

  • C16H14N2O2
  • M r = 266.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1037-efi1.jpg
  • a = 7.5250 (6) Å
  • b = 15.4643 (12) Å
  • c = 12.3982 (7) Å
  • β = 117.377 (4)°
  • V = 1281.17 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 100 K
  • 0.79 × 0.06 × 0.05 mm

Data collection

  • Bruker APEX DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.930, T max = 0.996
  • 16577 measured reflections
  • 3704 independent reflections
  • 2843 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.134
  • S = 1.05
  • 3704 reflections
  • 237 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001216X/sj2761sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001216X/sj2761Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks Universiti Sains Malaysia for a post-doctoral research fellowship. AMA and SAK thank the Chemistry Department, King Abdul Aziz University, Jeddah, for providing research facilities. AMA would also like to thank the deanship of scientific research at KAU for the financial grant No. 171/428.

supplementary crystallographic information

Comment

Five-membered heterocyclic compounds, natural as well as synthetic, are important for their biological activities. Compounds with isoxazol rings are of interest due to their broad spectrum of biological activities against monoamine oxidase inhibitor (Howell & Kimmel, 2008), bacterial (Bartlett & Schleyerbach, 1985), depression (Lamani et al., 2009), hypertensive (Howell & Kimmel, 2008), pyretic and inflammatory diseases (Jayashankar et al., 2009). The crystal structures of 2-[(E)-(3,5-dimethylisoxazol- 4-yl)diazenyl]benzoic acid (Alvarez-Thon et al., 2006), 4-Bromo-2-((E)-{4-[(3,4-dimethylisoxazol-5-yl)sulfamoyl]phenyl}iminiomethyl)phenolate (Tahir et al., 2008), 4-Chloro-2-[(E)-({4-[N-(3,4-dimethyl isoxazol-5-yl)sulfamoyl]phenyl}iminio)methyl]phenolate (Shad et al., 2008) and 2-[(E)-(3,4-Dimethylisoxazol-5-yl) iminomethyl]phenol (Fun et al., 2010) have been reported previously. In view of the importance of the title compound, (I), its crystal structure is reported here.

In the title compound (Fig. 1), the isoxazole ring is essentially planar with a maximum deviation of 0.007 (2) Å for atom C13. The dihedral angle between the isoxazole (O2/N2/C12–C14) ring and the (C1–C4/C9–C10) ring of the naphthyl unit, is 3.29 (7)°. The C12—O2 and C11═N1 bond lengths are 1.3635 (14) Å and 1.3036 (15) Å, respectively, and agree with the corresponding values in 2-[(E)-(3,4-dimethylisoxazol-5-yl)iminomethyl]phenol [1.344 (3) and 1.292 (4) Å; Fun et al., 2010].

In the crystal structure (Fig. 2), the imino N atoms are linked to the phenol O atoms and act as hydrogen-bond acceptors in intramolecular O1—H1O1···N1 interactions (Table 1) , which generate S(6) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by π–π interactions involving the isoxazole (O2/N2/C12–C14)ring and the (C1–C4/C9–C10) ring of the naphthyl unit, with centroid to centroid distance of 3.5200 (10) Å [symmetry code: -x, 2-y, 1-z].

Experimental

A mixture of 5-amino-3,4-dimethylisoxazole (0.50 g, 0.0025 mol) and 2-hydroxy-1-naphthaledhyde (0.43 g, 0.0025 mol) in methanol (15 mL) was refluxed for 5 h with stirring to give a light yellow precipitate. Then it was filtered and washed with methanol to give the pure compound. Yield: 72%; m. p. 160° C. The sample was recrystalized from methanol by dissolving the crude product and leaving the solution to evaporate slowly at room temperature. IR (KBr) v(max) cm-1: 2933 (C—H aromatic), 1626 (C═C), 1585 (HC═N), 1123 (C—N). 1H NMR (600 MHz, CDCl3) d: 8.30 (H3, d, J=12.72 Hz), 7.99 (H4, d, J=13.5 Hz), 7.87 (H5, d, J=11.76 Hz), 7.70 (H6, dd, J=8.58 Hz, J=5.1 Hz), 7.49 (H7, dd, J=10.8 Hz, J= 5.4 Hz), 7.34 (H9, s), 2.36 (-CH3, s), 2.15 (-CH3, s).

Refinement

All the H atoms were located in a difference Fourier map and allowed to refine freely [O—H = 0.97 (2) Å, C—H = 0.916 (19)–1.004 (19) Å].

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, showing the hydrogen-bonded network (dashed lines). H atoms are not involved in hydrogen bond interactions are omitted for clarity.

Crystal data

C16H14N2O2F(000) = 560
Mr = 266.29Dx = 1.381 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3616 reflections
a = 7.5250 (6) Åθ = 2.6–34.2°
b = 15.4643 (12) ŵ = 0.09 mm1
c = 12.3982 (7) ÅT = 100 K
β = 117.377 (4)°Needle, yellow
V = 1281.17 (16) Å30.79 × 0.06 × 0.05 mm
Z = 4

Data collection

Bruker APEX DUO CCD area-detector diffractometer3704 independent reflections
Radiation source: fine-focus sealed tube2843 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −10→10
Tmin = 0.930, Tmax = 0.996k = −21→21
16577 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0698P)2 + 0.3682P] where P = (Fo2 + 2Fc2)/3
3704 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.20289 (17)1.11942 (6)0.64493 (8)0.0209 (2)
O20.24094 (15)0.97368 (6)0.30327 (8)0.0173 (2)
N10.24292 (17)1.04190 (6)0.47613 (9)0.0152 (2)
N20.21030 (18)0.99921 (7)0.18571 (9)0.0182 (2)
C10.2410 (2)1.04273 (7)0.70239 (11)0.0150 (2)
C20.2479 (2)1.04255 (8)0.81837 (11)0.0179 (3)
C30.2877 (2)0.96778 (8)0.88407 (11)0.0172 (3)
C40.3177 (2)0.88841 (8)0.83642 (11)0.0149 (2)
C50.3597 (2)0.81113 (8)0.90574 (12)0.0184 (3)
C60.3833 (2)0.73399 (8)0.85954 (12)0.0201 (3)
C70.3626 (2)0.73093 (8)0.74058 (12)0.0207 (3)
C80.3253 (2)0.80526 (8)0.67215 (12)0.0177 (3)
C90.30404 (19)0.88660 (7)0.71809 (11)0.0141 (2)
C100.26908 (19)0.96648 (7)0.65075 (11)0.0138 (2)
C110.2611 (2)0.96861 (8)0.53223 (11)0.0148 (2)
C120.2289 (2)1.04637 (7)0.36180 (11)0.0146 (2)
C130.1957 (2)1.11763 (7)0.29069 (11)0.0140 (2)
C140.18303 (19)1.08332 (8)0.18048 (11)0.0151 (2)
C150.1393 (2)1.13268 (9)0.06759 (12)0.0201 (3)
C160.1737 (2)1.20938 (8)0.31960 (12)0.0175 (3)
H2A0.222 (3)1.0979 (12)0.8512 (16)0.029 (5)*
H3A0.290 (3)0.9681 (11)0.9648 (16)0.024 (4)*
H5A0.375 (3)0.8132 (11)0.9894 (16)0.027 (4)*
H6A0.416 (3)0.6822 (12)0.9078 (16)0.027 (4)*
H7A0.376 (3)0.6775 (12)0.7059 (16)0.029 (5)*
H8A0.309 (3)0.8009 (11)0.5908 (15)0.022 (4)*
H11A0.272 (3)0.9140 (11)0.4942 (15)0.026 (4)*
H15A0.091 (3)1.0970 (12)0.0011 (17)0.032 (5)*
H15B0.256 (3)1.1642 (14)0.0772 (18)0.043 (6)*
H15C0.034 (3)1.1763 (14)0.0517 (18)0.043 (6)*
H16A0.202 (3)1.2197 (12)0.4021 (18)0.036 (5)*
H16B0.263 (4)1.2459 (16)0.302 (2)0.053 (6)*
H16C0.041 (4)1.2329 (14)0.266 (2)0.047 (6)*
H1O10.207 (4)1.1091 (15)0.569 (2)0.055 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0339 (6)0.0115 (4)0.0197 (4)0.0004 (4)0.0144 (4)0.0013 (3)
O20.0244 (5)0.0130 (4)0.0163 (4)0.0015 (4)0.0109 (4)0.0002 (3)
N10.0175 (5)0.0146 (5)0.0133 (5)0.0000 (4)0.0069 (4)0.0012 (3)
N20.0232 (6)0.0186 (5)0.0150 (5)0.0001 (4)0.0107 (5)0.0001 (4)
C10.0173 (6)0.0123 (5)0.0150 (5)−0.0015 (4)0.0070 (5)0.0004 (4)
C20.0223 (7)0.0155 (5)0.0166 (5)−0.0020 (5)0.0095 (5)−0.0032 (4)
C30.0189 (6)0.0188 (6)0.0143 (5)−0.0033 (5)0.0080 (5)−0.0013 (4)
C40.0135 (6)0.0160 (5)0.0149 (5)−0.0009 (4)0.0061 (5)0.0014 (4)
C50.0183 (6)0.0204 (6)0.0170 (5)−0.0006 (5)0.0085 (5)0.0046 (4)
C60.0193 (6)0.0171 (6)0.0246 (6)0.0001 (5)0.0106 (5)0.0063 (5)
C70.0240 (7)0.0147 (6)0.0261 (6)0.0033 (5)0.0139 (6)0.0029 (5)
C80.0218 (7)0.0146 (5)0.0199 (6)0.0017 (5)0.0123 (5)0.0007 (4)
C90.0141 (6)0.0137 (5)0.0150 (5)0.0004 (4)0.0072 (5)0.0013 (4)
C100.0148 (6)0.0125 (5)0.0144 (5)0.0000 (4)0.0068 (5)0.0003 (4)
C110.0151 (6)0.0139 (5)0.0153 (5)0.0004 (5)0.0069 (5)0.0004 (4)
C120.0158 (6)0.0141 (5)0.0132 (5)−0.0011 (5)0.0062 (5)−0.0014 (4)
C130.0147 (6)0.0136 (5)0.0139 (5)−0.0009 (4)0.0066 (5)−0.0003 (4)
C140.0142 (6)0.0166 (5)0.0152 (5)−0.0005 (5)0.0073 (5)0.0001 (4)
C150.0244 (7)0.0220 (6)0.0153 (6)−0.0011 (6)0.0105 (5)0.0017 (5)
C160.0216 (7)0.0130 (5)0.0175 (6)0.0006 (5)0.0085 (5)0.0001 (4)

Geometric parameters (Å, °)

O1—C11.3448 (14)C6—H6A0.962 (18)
O1—H1O10.97 (2)C7—C81.3787 (17)
O2—C121.3635 (14)C7—H7A0.957 (19)
O2—N21.4229 (13)C8—C91.4198 (16)
N1—C111.3036 (15)C8—H8A0.962 (17)
N1—C121.3739 (15)C9—C101.4457 (16)
N2—C141.3138 (16)C10—C111.4431 (16)
C1—C101.4033 (16)C11—H11A0.989 (18)
C1—C21.4147 (17)C12—C131.3607 (16)
C2—C31.3659 (17)C13—C141.4274 (16)
C2—H2A1.004 (19)C13—C161.4912 (16)
C3—C41.4245 (17)C14—C151.4920 (17)
C3—H3A0.991 (18)C15—H15A0.916 (19)
C4—C51.4203 (17)C15—H15B0.96 (2)
C4—C91.4231 (16)C15—H15C0.99 (2)
C5—C61.3696 (19)C16—H16A0.96 (2)
C5—H5A0.990 (18)C16—H16B0.98 (3)
C6—C71.4108 (19)C16—H16C0.98 (2)
C1—O1—H1O1105.9 (14)C8—C9—C10123.34 (11)
C12—O2—N2107.29 (9)C4—C9—C10119.09 (11)
C11—N1—C12122.26 (10)C1—C10—C11120.06 (10)
C14—N2—O2105.86 (9)C1—C10—C9118.69 (11)
O1—C1—C10122.65 (11)C11—C10—C9121.25 (10)
O1—C1—C2116.06 (10)N1—C11—C10120.54 (11)
C10—C1—C2121.28 (11)N1—C11—H11A120.0 (10)
C3—C2—C1120.22 (11)C10—C11—H11A119.5 (10)
C3—C2—H2A120.6 (10)C13—C12—O2111.11 (10)
C1—C2—H2A119.2 (10)C13—C12—N1127.84 (11)
C2—C3—C4121.00 (11)O2—C12—N1121.01 (10)
C2—C3—H3A119.7 (10)C12—C13—C14103.35 (10)
C4—C3—H3A119.3 (10)C12—C13—C16128.48 (11)
C5—C4—C9119.85 (11)C14—C13—C16128.16 (11)
C5—C4—C3120.52 (11)N2—C14—C13112.37 (11)
C9—C4—C3119.63 (11)N2—C14—C15120.98 (11)
C6—C5—C4121.03 (12)C13—C14—C15126.63 (11)
C6—C5—H5A119.4 (10)C14—C15—H15A111.2 (12)
C4—C5—H5A119.5 (10)C14—C15—H15B110.3 (12)
C5—C6—C7119.55 (12)H15A—C15—H15B112.1 (18)
C5—C6—H6A120.8 (11)C14—C15—H15C110.3 (12)
C7—C6—H6A119.7 (11)H15A—C15—H15C106.4 (16)
C8—C7—C6120.58 (12)H15B—C15—H15C106.3 (18)
C8—C7—H7A118.5 (11)C13—C16—H16A114.9 (11)
C6—C7—H7A120.9 (11)C13—C16—H16B109.5 (14)
C7—C8—C9121.36 (12)H16A—C16—H16B107.7 (18)
C7—C8—H8A118.6 (10)C13—C16—H16C112.3 (13)
C9—C8—H8A120.0 (10)H16A—C16—H16C108.8 (19)
C8—C9—C4117.57 (11)H16B—C16—H16C102.8 (19)
C12—O2—N2—C140.20 (14)C8—C9—C10—C1177.05 (13)
O1—C1—C2—C3−179.34 (12)C4—C9—C10—C1−2.75 (19)
C10—C1—C2—C31.7 (2)C8—C9—C10—C11−2.4 (2)
C1—C2—C3—C4−1.7 (2)C4—C9—C10—C11177.78 (12)
C2—C3—C4—C5179.74 (13)C12—N1—C11—C10−178.04 (12)
C2—C3—C4—C9−0.7 (2)C1—C10—C11—N15.2 (2)
C9—C4—C5—C6−1.5 (2)C9—C10—C11—N1−175.36 (12)
C3—C4—C5—C6178.15 (13)N2—O2—C12—C13−1.01 (15)
C4—C5—C6—C7−0.9 (2)N2—O2—C12—N1176.88 (12)
C5—C6—C7—C82.1 (2)C11—N1—C12—C13175.02 (14)
C6—C7—C8—C9−0.8 (2)C11—N1—C12—O2−2.5 (2)
C7—C8—C9—C4−1.5 (2)O2—C12—C13—C141.33 (15)
C7—C8—C9—C10178.66 (13)N1—C12—C13—C14−176.38 (13)
C5—C4—C9—C82.64 (19)O2—C12—C13—C16−179.77 (13)
C3—C4—C9—C8−176.96 (12)N1—C12—C13—C162.5 (2)
C5—C4—C9—C10−177.54 (12)O2—N2—C14—C130.64 (15)
C3—C4—C9—C102.85 (19)O2—N2—C14—C15−177.96 (12)
O1—C1—C10—C111.1 (2)C12—C13—C14—N2−1.23 (16)
C2—C1—C10—C11179.96 (13)C16—C13—C14—N2179.86 (13)
O1—C1—C10—C9−178.36 (12)C12—C13—C14—C15177.28 (13)
C2—C1—C10—C90.5 (2)C16—C13—C14—C15−1.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.97 (2)1.66 (3)2.5471 (15)150 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2761).

References

  • Alvarez-Thon, L., Bustos, C., Schott, E., Sanchez, C. & Ibañez, A. (2006). Acta Cryst. E62, o595–o597.
  • Bartlett, R. R. & Schleyerbach, R. (1985). Int. J. Immunophamacol.7, 7–18. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Hemamalini, M., Asiri, A. M., Khan, S. A. & Khan, K. A. (2010). Acta Cryst. E66, o773–o774. [PMC free article] [PubMed]
  • Howell, L. L. & Kimmel, H. L. (2008). Biochem. Pharmacol.75, 196–217. [PubMed]
  • Jayashankar, B., Rai, K. M. L., Baskaran, N. & Sathish, H. S. (2009). Eur. J. Med. Chem.44, 3898–3902. [PubMed]
  • Lamani, R. S., Shetty, N. S., Kamble, R. R. & Khazi, I. A. M. (2009). Eur. J. Med. Chem.44, 2828–2833. [PubMed]
  • Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography