PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1047.
Published online 2010 April 10. doi:  10.1107/S1600536810012535
PMCID: PMC2979053

2′,10′-Dibromo­spiro­[cylohexane-1,6-di­benzo[d,f][1,3]dioxepine]

Abstract

In the title compound, C18H16Br2O2, the dihedral angle between the aromatic rings is 35.55 (17)° and the cyclohexyl ring adopts a chair-like conformation. In the crystal, molecules are linked by van der Waals forces.

Related literature

For background literature concerning title compound, see Dean (1963 [triangle]); Yang et al. (2004 [triangle]). For details of the synthesis, see Zhang et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1047-scheme1.jpg

Experimental

Crystal data

  • C18H16Br2O2
  • M r = 424.13
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1047-efi1.jpg
  • a = 17.793 (4) Å
  • b = 10.143 (5) Å
  • c = 18.279 (5) Å
  • V = 3299 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 4.92 mm−1
  • T = 290 K
  • 0.13 × 0.12 × 0.11 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.567, T max = 0.614
  • 29533 measured reflections
  • 3735 independent reflections
  • 2294 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.111
  • S = 1.00
  • 3735 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810012535/ng2752sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012535/ng2752Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Science Foundation of China (grant No. 50973010).

supplementary crystallographic information

Comment

Dibenzo[d,f] [1,3] dioxepine derivatives are important seven-member-ring type bridged biphenyl compounds, which proved highly significant for pharmaceutical field (Dean, 1963). Introducing functional group Br on benzene ring of dibenzo[d,f][1,3] dioxepine derivatives can expandthe field of their application, such as photoluminescence, electro-luminescence devices and nonlinear potics etc ( Yang et al., 2004). Herein we present the crysal structure of the title compound.

The molecule structure of title compound, (I), C18H16Br2O2, as shown in Fig. 1, all bond lengths and angles are in normal range. In the crystal structure, the six-membered ring formed by C13 to C18 is in the chair-like comformation. The plane of two benzene rings form a dihedral angle of 35.33 (17) °. The crystal packing is stabilized by van der Waals' force.

Experimental

The title compound was prepared according to the literature (Zhang et al., 2003). Single crystals suitable for X-ray diffraction were prepared by slow evaperation of an ethanol soluion.

Refinement

Carbon-bound H-atoms were geometrically positioned with C—H = 0.93 and 0.97 Å with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The asymmetric of title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C18H16Br2O2F(000) = 1680
Mr = 424.13Dx = 1.708 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3788 reflections
a = 17.793 (4) Åθ = 2.2–54.8°
b = 10.143 (5) ŵ = 4.92 mm1
c = 18.279 (5) ÅT = 290 K
V = 3299 (2) Å3Block, white
Z = 80.13 × 0.12 × 0.11 mm

Data collection

Rigaku R-AXIS RAPID diffractometer3735 independent reflections
Radiation source: fine-focus sealed tube2294 reflections with I > 2σ(I)
graphiteRint = 0.088
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −18→23
Tmin = 0.567, Tmax = 0.614k = −12→12
29533 measured reflectionsl = −23→23

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.049P)2 + 1.6141P] where P = (Fo2 + 2Fc2)/3
3735 reflections(Δ/σ)max = 0.016
199 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.04490 (3)0.06701 (5)0.35791 (2)0.07070 (18)
Br20.85968 (3)0.22102 (6)0.73751 (2)0.0790 (2)
C11.0023 (2)0.2318 (4)0.38479 (19)0.0504 (10)
C21.0211 (2)0.3410 (4)0.3440 (2)0.0509 (10)
H21.05430.33410.30490.061*
C30.9896 (2)0.4612 (4)0.36234 (18)0.0468 (9)
H31.00080.53570.33480.056*
C40.94151 (19)0.4708 (4)0.42156 (18)0.0384 (8)
C50.92258 (19)0.3603 (4)0.46297 (17)0.0393 (8)
C60.9533 (2)0.2386 (4)0.44328 (18)0.0447 (9)
H60.94090.16290.46930.054*
C70.8410 (2)0.3224 (4)0.65214 (18)0.0487 (9)
C80.8863 (2)0.3024 (4)0.59131 (18)0.0436 (9)
H80.92450.24000.59280.052*
C90.87442 (18)0.3757 (4)0.52831 (17)0.0375 (8)
C100.81592 (19)0.4670 (4)0.52830 (17)0.0399 (8)
C110.7721 (2)0.4878 (4)0.5897 (2)0.0485 (9)
H110.73390.55040.58870.058*
C120.7850 (2)0.4158 (4)0.65240 (19)0.0532 (10)
H120.75640.43020.69420.064*
C130.84221 (18)0.6288 (4)0.43511 (18)0.0402 (8)
C140.8204 (2)0.6406 (4)0.35503 (17)0.0488 (9)
H14A0.76630.65090.35120.059*
H14B0.83430.56030.32950.059*
C150.8591 (2)0.7583 (5)0.3188 (2)0.0610 (12)
H15A0.91280.74200.31630.073*
H15B0.84060.76810.26920.073*
C160.8450 (3)0.8833 (5)0.3606 (2)0.0709 (13)
H16A0.79190.90430.35880.085*
H16B0.87230.95510.33770.085*
C170.8696 (3)0.8706 (4)0.4399 (2)0.0634 (11)
H17A0.92360.85820.44200.076*
H17B0.85750.95110.46600.076*
C180.8310 (2)0.7552 (4)0.4764 (2)0.0507 (10)
H18A0.85060.74510.52560.061*
H18B0.77760.77350.48020.061*
O10.91933 (12)0.5946 (2)0.44369 (12)0.0406 (6)
O20.79528 (13)0.5265 (3)0.46336 (12)0.0439 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0773 (3)0.0523 (3)0.0825 (3)0.0132 (2)0.0174 (2)−0.0179 (2)
Br20.1021 (4)0.0865 (4)0.0482 (3)0.0256 (3)0.0059 (2)0.0173 (2)
C10.050 (2)0.049 (3)0.052 (2)0.0083 (19)−0.0017 (17)−0.0152 (18)
C20.050 (2)0.053 (3)0.049 (2)0.0007 (19)0.0078 (17)−0.0141 (19)
C30.042 (2)0.049 (3)0.049 (2)−0.0094 (18)0.0049 (16)−0.0013 (17)
C40.0355 (19)0.036 (2)0.0436 (18)−0.0013 (15)−0.0019 (14)−0.0083 (15)
C50.0358 (19)0.041 (2)0.0407 (17)−0.0019 (16)−0.0029 (14)−0.0054 (15)
C60.047 (2)0.037 (2)0.051 (2)0.0000 (18)0.0004 (16)−0.0026 (16)
C70.055 (2)0.050 (3)0.0416 (19)−0.0012 (19)0.0015 (16)0.0006 (17)
C80.045 (2)0.040 (2)0.0448 (19)0.0040 (17)−0.0025 (15)−0.0028 (16)
C90.0367 (19)0.035 (2)0.0406 (18)−0.0023 (16)0.0005 (14)−0.0033 (15)
C100.039 (2)0.040 (2)0.0413 (18)−0.0010 (16)−0.0017 (14)0.0008 (15)
C110.039 (2)0.050 (3)0.057 (2)0.0081 (18)0.0087 (16)0.0004 (18)
C120.055 (2)0.059 (3)0.046 (2)0.007 (2)0.0129 (17)−0.0014 (18)
C130.033 (2)0.037 (2)0.0505 (19)0.0008 (16)0.0029 (14)0.0023 (16)
C140.047 (2)0.054 (3)0.046 (2)0.0001 (19)0.0004 (16)0.0043 (17)
C150.052 (2)0.072 (4)0.058 (2)0.004 (2)0.0043 (18)0.018 (2)
C160.062 (3)0.057 (3)0.094 (3)0.003 (2)0.009 (2)0.025 (3)
C170.065 (3)0.039 (3)0.086 (3)0.001 (2)0.007 (2)−0.003 (2)
C180.050 (2)0.044 (3)0.058 (2)0.0050 (19)0.0041 (17)−0.0028 (18)
O10.0348 (13)0.0354 (16)0.0516 (13)−0.0005 (11)−0.0001 (10)−0.0037 (11)
O20.0379 (14)0.0448 (17)0.0489 (13)−0.0042 (11)−0.0044 (11)0.0071 (11)

Geometric parameters (Å, °)

Br1—C11.900 (4)C11—H110.9300
Br2—C71.898 (4)C12—H120.9300
C1—C21.377 (6)C13—O11.424 (4)
C1—C61.381 (5)C13—O21.428 (4)
C2—C31.382 (6)C13—C181.501 (5)
C2—H20.9300C13—C141.519 (5)
C3—C41.384 (5)C14—C151.530 (5)
C3—H30.9300C14—H14A0.9700
C4—O11.376 (4)C14—H14B0.9700
C4—C51.394 (5)C15—C161.502 (6)
C5—C61.398 (5)C15—H15A0.9700
C5—C91.478 (5)C15—H15B0.9700
C6—H60.9300C16—C171.521 (6)
C7—C121.374 (5)C16—H16A0.9700
C7—C81.388 (5)C16—H16B0.9700
C8—C91.387 (5)C17—C181.512 (6)
C8—H80.9300C17—H17A0.9700
C9—C101.394 (5)C17—H17B0.9700
C10—O21.381 (4)C18—H18A0.9700
C10—C111.383 (5)C18—H18B0.9700
C11—C121.379 (5)
C2—C1—C6122.2 (4)O1—C13—C18106.3 (3)
C2—C1—Br1118.1 (3)O2—C13—C18111.1 (3)
C6—C1—Br1119.7 (3)O1—C13—C14111.8 (3)
C1—C2—C3118.7 (3)O2—C13—C14104.8 (3)
C1—C2—H2120.7C18—C13—C14112.6 (3)
C3—C2—H2120.7C13—C14—C15111.3 (3)
C4—C3—C2120.2 (4)C13—C14—H14A109.4
C4—C3—H3119.9C15—C14—H14A109.4
C2—C3—H3119.9C13—C14—H14B109.4
O1—C4—C3118.2 (3)C15—C14—H14B109.4
O1—C4—C5120.3 (3)H14A—C14—H14B108.0
C3—C4—C5121.2 (3)C16—C15—C14111.3 (3)
C4—C5—C6118.4 (3)C16—C15—H15A109.4
C4—C5—C9119.6 (3)C14—C15—H15A109.4
C6—C5—C9121.9 (3)C16—C15—H15B109.4
C1—C6—C5119.4 (4)C14—C15—H15B109.4
C1—C6—H6120.3H15A—C15—H15B108.0
C5—C6—H6120.3C15—C16—C17111.4 (4)
C12—C7—C8121.6 (3)C15—C16—H16A109.3
C12—C7—Br2119.8 (3)C17—C16—H16A109.3
C8—C7—Br2118.5 (3)C15—C16—H16B109.3
C9—C8—C7119.9 (3)C17—C16—H16B109.3
C9—C8—H8120.0H16A—C16—H16B108.0
C7—C8—H8120.0C18—C17—C16110.8 (4)
C8—C9—C10118.0 (3)C18—C17—H17A109.5
C8—C9—C5121.8 (3)C16—C17—H17A109.5
C10—C9—C5120.2 (3)C18—C17—H17B109.5
O2—C10—C11118.7 (3)C16—C17—H17B109.5
O2—C10—C9119.3 (3)H17A—C17—H17B108.1
C11—C10—C9121.5 (3)C13—C18—C17112.2 (3)
C12—C11—C10120.0 (3)C13—C18—H18A109.2
C12—C11—H11120.0C17—C18—H18A109.2
C10—C11—H11120.0C13—C18—H18B109.2
C7—C12—C11118.9 (3)C17—C18—H18B109.2
C7—C12—H12120.5H18A—C18—H18B107.9
C11—C12—H12120.5C4—O1—C13117.8 (3)
O1—C13—O2110.3 (3)C10—O2—C13118.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2752).

References

  • Dean, F. M. (1963). Naturally Occurring Oxygen Ring Compounds, p. 549. London: Butterworths.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yang, B., Zhang, H.-Q., Xu, H., Zheng, Y., Yu, J.-S., Ma, Y.-G. & Sheng, J.-C. (2004). Chim. Sin. Acta Phys. pp. 1476–1480.
  • Zhang, H.-O., Mo, Z.-C., Zheng, Y., Yang, G.-D., Ye, L., Ma, Y.-G., Chen, X.-F. & Sheng, J.-C. (2003). Chin. J. Org. Chem. pp. 578–583.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography