PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m523.
Published online 2010 April 14. doi:  10.1107/S1600536810012894
PMCID: PMC2979052

Bis[2-(1H-benzimidazol-2-yl)­phenolato]­dimethanol­manganese(III) chloride

Abstract

In the title compound, [Mn(C13H9N2O)2(CH3OH)2]Cl, the MnIII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-0m523-efi5.jpg) is coordinated by two N,O-bidentate 2-(1H-benzimidazol-2-yl)phenolate ligands and two methanol mol­ecules, to generate a distorted trans-MnN2O4 octa­hedral geometry for the metal ion. The dihedral angle between the aromatic ring systems in the ligand is 16.0 (3)°. In the crystal structure, the complex cations and chloride anions are linked by O—H(...)Cl and N—H(...)Cl hydrogen bonds. The chloride ion lies on a crystallographic twofold axis.

Related literature

For our previous work on manganese complexes, see: Li et al. (2000 [triangle], 2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m523-scheme1.jpg

Experimental

Crystal data

  • [Mn(C13H9N2O)2(CH4O)2]Cl
  • M r = 572.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m523-efi6.jpg
  • a = 17.897 (4) Å
  • b = 9.0349 (19) Å
  • c = 16.024 (3) Å
  • β = 93.502 (4)°
  • V = 2586.2 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.66 mm−1
  • T = 298 K
  • 0.30 × 0.10 × 0.06 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.827, T max = 0.962
  • 5075 measured reflections
  • 2241 independent reflections
  • 1444 reflections with I > 2σ(I)
  • R int = 0.073

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069
  • wR(F 2) = 0.195
  • S = 1.01
  • 2241 reflections
  • 179 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810012894/hb5394sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810012894/hb5394Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20471033), the Provincial Natural Science Foundation of Shanxi Province of China (grant No. 20051013) and the Overseas Returned Scholar Foundation of Shanxi Province of China in 2008, as well as the Doctor Startup Foundation of Shanxi University of China.

supplementary crystallographic information

Comment

As part of the ongoing study of manganese complexes (Li et al., 2000, 2002), we now report the crystal structure of the title compound (I).

The geometric parameters of (I) are listed in Table 1. The molecular conformation is illustrated in Fig. 1. This compound consists of a Mn(III) 2-(1H-benzimidazol-2-yl)phenol complex cation and a chloride anion. The complex cation has a slightly elongated octahedral coordination of the metal ion through the formation of two Mn—N and four Mn—O bonds with two asymmetric bidentate 2-(1H-benzimidazol-2-yl)phenol ligands and two methanol molecules. The equatorial plane is formed by O1, O1A, N1, N1A from two ligands with the Mn—N bonds of 2.041 (4) Å and Mn—O bonds of 1.864 (4) Å respectively, similar to those in the related [Mn(C13H8N2OBr)2(C5H5N)2.3(C5H5N) (Li et al., 2002), [Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4 and [Mn(C20H14N2O2)(C7H5O2)].CH3CN Mn(III) compounds (Li et al., 2000). The axial positions are occupied by two methanol O atoms with Mn—O distance of 2.252 (4) Å, slightly shorter than the axial Mn—O bonds [2.297 (5) and 2.287 (5) Å] in [Mn(C20H14N2O2)(H2O)(CH3OH)]ClO4 compound. Therefore, this complex exhibits a typically axial Jahn–Teller distortion characteristic of Mn(III) ions. The metal Mn atom is on a crystallographic inversion center. The dihedral angle between the benzimidazol group plane and the phenol group plane of the ligand is 16.0 (3)°, possibly resulting from the request of the coordination between Mn(III) and the ligands.

The hydrogen-bonding geometry in (I) is listed in Table 2 and illustrated as Fig. 2. There are two types of hydrogen bonds O—H···Cl and N—H···Cl in the crystal packing. Every chloride anion is involved in four such hydrogen bonds and lies on a two-fold axis.

Experimental

2-(1H-benzimidazol-2-yl)phenol was synthesized by adding 20 ml of salicylaldehyde (20 mmol) ethanol solution to 60 ml of O-phenylenediamine (20 mmol) ethanol solution at 373 K and refluxing for an hour. The solvent was evaporated and the light yellow precipitate collected.

2-(1H-benzimidazol-2-yl)phenol (0.2 mmol) was disolved in 8 ml of methanol and MnCl2 (0.1 mmol) in 2 ml of water. Mixing the two solutions and the solution turn to black immediately. Stirring the solution for 10 minutes at room temperature. Filtered, the filtrate was left at room temperature and black slabs of (I) appeared from the solution after three days, by slow evaporation of the mixing solvent.

Refinement

H atoms attached to C and N atoms of (I) were placed in geometrically idealized positions, with Csp2—H = 0.93, Csp3—H = 0.96 and Nsp2—H = 0.86 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Csp2 and Nsp2) or 1.5Ueq(Csp3). H atom attached to O atom was located from difference Fourier map and refined its global Uiso value. The O—H distance is 0.877 Å.

Figures

Fig. 1.
The structure of (I), with displacement ellipsoids drawn at the 30% probability level for non-H atoms. (Symmetry code: A 1 - x, 2 - y, -z.)
Fig. 2.
The H-bond network of (I). (Symmetry codes: A 1 - x, 2 - y, -z; B 1 - x, y, -z + 1/2; D x, y - 1, z; E 1 - x, 1 - y, -z; F 1 - x, y - 1, -z + 1/2; H x, 1 - y, z - 1/2; J x, 2 - y, z - 1/2.)

Crystal data

[Mn(C13H9N2O)2(CH4O)2]ClF(000) = 1184
Mr = 572.92Dx = 1.471 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1038 reflections
a = 17.897 (4) Åθ = 2.3–21.8°
b = 9.0349 (19) ŵ = 0.66 mm1
c = 16.024 (3) ÅT = 298 K
β = 93.502 (4)°Sheet, black
V = 2586.2 (10) Å30.30 × 0.10 × 0.06 mm
Z = 4

Data collection

Bruker SMART 1K CCD diffractometer2241 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
graphiteRint = 0.073
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −21→20
Tmin = 0.827, Tmax = 0.962k = −10→10
5075 measured reflectionsl = −17→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0997P)2] where P = (Fo2 + 2Fc2)/3
2241 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.72 e Å3
1 restraintΔρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50001.00000.00000.0291 (4)
N10.4766 (3)0.7876 (5)0.0331 (3)0.0435 (12)
N20.4849 (3)0.5839 (5)0.1099 (3)0.0518 (14)
H20.50160.52250.14760.062*
O10.5985 (2)0.9683 (4)0.0406 (3)0.0473 (11)
O20.4667 (2)1.0747 (4)0.1266 (2)0.0499 (11)
C10.6238 (3)0.8846 (6)0.1061 (3)0.0414 (14)
C20.5854 (3)0.7679 (6)0.1370 (3)0.0409 (14)
C30.6160 (4)0.6872 (6)0.2031 (4)0.0509 (16)
H30.58900.60920.22440.061*
C40.6883 (4)0.7211 (7)0.2396 (4)0.065 (2)
H40.70940.66760.28470.078*
C50.7259 (3)0.8380 (7)0.2046 (4)0.0541 (17)
H50.77360.86350.22620.065*
C60.6942 (3)0.9148 (6)0.1399 (4)0.0472 (15)
H60.72110.99140.11730.057*
C70.5144 (3)0.7165 (5)0.0934 (3)0.0327 (13)
C80.4166 (3)0.6958 (6)0.0065 (4)0.0436 (15)
C90.3598 (4)0.7060 (6)−0.0577 (4)0.0519 (17)
H90.35530.7887−0.09220.062*
C100.3117 (3)0.5900 (7)−0.0673 (4)0.0537 (17)
H100.27310.5950−0.10870.064*
C110.3180 (4)0.4667 (7)−0.0184 (4)0.0593 (19)
H110.28360.3905−0.02770.071*
C120.3722 (4)0.4514 (6)0.0427 (4)0.0537 (17)
H120.37560.36690.07580.064*
C130.4212 (3)0.5632 (6)0.0540 (3)0.0411 (14)
C140.4002 (4)1.0293 (7)0.1622 (4)0.066 (2)
H14A0.37140.96860.12300.100*
H14B0.37151.11490.17560.100*
H14C0.41250.97370.21220.100*
Cl10.50000.3350 (2)0.25000.0652 (8)
H2O0.48431.14870.15720.031 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0406 (7)0.0171 (5)0.0290 (7)−0.0039 (5)−0.0035 (5)0.0035 (5)
N10.061 (3)0.026 (2)0.043 (3)−0.006 (2)0.003 (2)0.001 (2)
N20.080 (4)0.030 (3)0.047 (3)0.003 (3)0.014 (3)0.007 (2)
O10.052 (3)0.041 (2)0.048 (3)−0.0053 (18)−0.0010 (19)0.0075 (19)
O20.073 (3)0.038 (2)0.040 (2)−0.017 (2)0.011 (2)−0.016 (2)
C10.054 (4)0.035 (3)0.035 (3)0.002 (3)−0.001 (3)−0.006 (3)
C20.052 (4)0.035 (3)0.035 (3)0.005 (3)−0.003 (3)−0.011 (3)
C30.071 (4)0.023 (3)0.059 (4)−0.005 (3)0.008 (3)0.002 (3)
C40.101 (6)0.046 (4)0.045 (4)0.029 (4)−0.020 (4)0.005 (3)
C50.048 (4)0.047 (4)0.065 (4)0.007 (3)−0.018 (3)−0.013 (3)
C60.053 (4)0.037 (3)0.051 (4)0.000 (3)−0.002 (3)−0.003 (3)
C70.051 (3)0.023 (3)0.024 (3)0.008 (2)0.001 (2)0.004 (2)
C80.050 (4)0.037 (3)0.045 (4)−0.019 (3)0.016 (3)−0.018 (3)
C90.074 (5)0.037 (3)0.044 (4)0.003 (3)−0.003 (3)0.010 (3)
C100.052 (4)0.052 (4)0.055 (4)−0.011 (3)−0.009 (3)−0.013 (3)
C110.073 (5)0.041 (4)0.066 (5)−0.022 (3)0.017 (4)−0.017 (3)
C120.081 (5)0.027 (3)0.056 (4)−0.010 (3)0.025 (4)−0.001 (3)
C130.048 (4)0.047 (3)0.028 (3)0.011 (3)0.003 (3)0.001 (3)
C140.078 (5)0.059 (4)0.064 (5)−0.017 (4)0.022 (4)−0.009 (3)
Cl10.142 (2)0.0221 (10)0.0309 (12)0.000−0.0013 (13)0.000

Geometric parameters (Å, °)

Mn1—O11.864 (4)C3—H30.9300
Mn1—O1i1.864 (4)C4—C51.389 (9)
Mn1—N12.041 (4)C4—H40.9300
Mn1—N1i2.041 (4)C5—C61.343 (8)
Mn1—O22.252 (4)C5—H50.9300
Mn1—O2i2.252 (4)C6—H60.9300
N1—C71.312 (6)C8—C91.404 (7)
N1—C81.403 (6)C8—C131.419 (8)
N2—C71.343 (7)C9—C101.359 (8)
N2—C131.418 (7)C9—H90.9300
N2—H20.8600C10—C111.362 (9)
O1—C11.349 (6)C10—H100.9300
O2—C141.412 (7)C11—C121.342 (9)
O2—H2O0.8771C11—H110.9300
C1—C61.368 (8)C12—C131.343 (8)
C1—C21.369 (8)C12—H120.9300
C2—C31.373 (7)C14—H14A0.9600
C2—C71.486 (7)C14—H14B0.9600
C3—C41.420 (9)C14—H14C0.9600
O1—Mn1—O1i180.0C5—C4—H4121.7
O1—Mn1—N188.22 (17)C3—C4—H4121.7
O1i—Mn1—N191.78 (17)C6—C5—C4120.8 (6)
O1—Mn1—N1i91.78 (17)C6—C5—H5119.6
O1i—Mn1—N1i88.22 (17)C4—C5—H5119.6
N1—Mn1—N1i180.0C5—C6—C1122.5 (6)
O1—Mn1—O291.61 (17)C5—C6—H6118.7
O1i—Mn1—O288.39 (17)C1—C6—H6118.7
N1—Mn1—O288.72 (17)N1—C7—N2113.0 (5)
N1i—Mn1—O291.28 (17)N1—C7—C2125.5 (5)
O1—Mn1—O2i88.39 (17)N2—C7—C2121.4 (5)
O1i—Mn1—O2i91.61 (17)N1—C8—C9133.6 (5)
N1—Mn1—O2i91.28 (17)N1—C8—C13108.5 (5)
N1i—Mn1—O2i88.72 (17)C9—C8—C13117.7 (5)
O2—Mn1—O2i180.0C10—C9—C8117.2 (5)
C7—N1—C8106.5 (4)C10—C9—H9121.4
C7—N1—Mn1123.2 (3)C8—C9—H9121.4
C8—N1—Mn1129.9 (4)C9—C10—C11122.4 (6)
C7—N2—C13107.6 (5)C9—C10—H10118.8
C7—N2—H2126.2C11—C10—H10118.8
C13—N2—H2126.2C12—C11—C10122.3 (6)
C1—O1—Mn1128.6 (4)C12—C11—H11118.9
C14—O2—Mn1123.6 (4)C10—C11—H11118.9
C14—O2—H2O106.2C11—C12—C13117.2 (6)
Mn1—O2—H2O128.8C11—C12—H12121.4
O1—C1—C6117.0 (5)C13—C12—H12121.4
O1—C1—C2124.1 (5)C12—C13—N2132.6 (6)
C6—C1—C2118.8 (5)C12—C13—C8123.1 (5)
C1—C2—C3120.2 (5)N2—C13—C8104.3 (5)
C1—C2—C7120.3 (5)O2—C14—H14A109.5
C3—C2—C7119.1 (5)O2—C14—H14B109.5
C2—C3—C4121.0 (6)H14A—C14—H14B109.5
C2—C3—H3119.5O2—C14—H14C109.5
C4—C3—H3119.5H14A—C14—H14C109.5
C5—C4—C3116.7 (5)H14B—C14—H14C109.5
O1—Mn1—N1—C726.5 (5)C2—C1—C6—C5−2.8 (9)
O1i—Mn1—N1—C7−153.5 (5)C8—N1—C7—N20.0 (6)
O2—Mn1—N1—C7−65.2 (5)Mn1—N1—C7—N2173.8 (4)
O2i—Mn1—N1—C7114.8 (5)C8—N1—C7—C2176.2 (5)
O1—Mn1—N1—C8−161.3 (5)Mn1—N1—C7—C2−10.1 (8)
O1i—Mn1—N1—C818.7 (5)C13—N2—C7—N10.8 (6)
O2—Mn1—N1—C8107.1 (5)C13—N2—C7—C2−175.5 (5)
O2i—Mn1—N1—C8−72.9 (5)C1—C2—C7—N1−11.6 (8)
N1—Mn1—O1—C1−34.3 (4)C3—C2—C7—N1175.4 (5)
N1i—Mn1—O1—C1145.7 (4)C1—C2—C7—N2164.2 (5)
O2—Mn1—O1—C154.3 (4)C3—C2—C7—N2−8.8 (8)
O2i—Mn1—O1—C1−125.7 (4)C7—N1—C8—C9−176.0 (6)
O1—Mn1—O2—C14−136.2 (5)Mn1—N1—C8—C910.8 (10)
O1i—Mn1—O2—C1443.8 (5)C7—N1—C8—C13−0.9 (6)
N1—Mn1—O2—C14−48.1 (5)Mn1—N1—C8—C13−174.1 (4)
N1i—Mn1—O2—C14131.9 (5)N1—C8—C9—C10177.3 (6)
Mn1—O1—C1—C6−159.7 (4)C13—C8—C9—C102.6 (9)
Mn1—O1—C1—C224.2 (8)C8—C9—C10—C11−1.2 (10)
O1—C1—C2—C3178.9 (5)C9—C10—C11—C120.1 (11)
C6—C1—C2—C32.8 (8)C10—C11—C12—C13−0.5 (10)
O1—C1—C2—C76.0 (8)C11—C12—C13—N2−178.6 (6)
C6—C1—C2—C7−170.1 (5)C11—C12—C13—C82.0 (10)
C1—C2—C3—C4−1.2 (9)C7—N2—C13—C12179.2 (6)
C7—C2—C3—C4171.8 (5)C7—N2—C13—C8−1.3 (6)
C2—C3—C4—C5−0.5 (9)N1—C8—C13—C12−179.1 (5)
C3—C4—C5—C60.6 (10)C9—C8—C13—C12−3.1 (9)
C4—C5—C6—C11.1 (10)N1—C8—C13—N21.4 (6)
O1—C1—C6—C5−179.2 (5)C9—C8—C13—N2177.3 (5)

Symmetry codes: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···Cl1ii0.882.253.107 (3)165
N2—H2···Cl10.862.363.177 (5)159

Symmetry codes: (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5394).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, J., Yang, S.-M., Zhang, F.-X., Tang, Z.-X., Shi, Q.-Z., Wu, Q.-J. & Huang, Z.-X. (2000). Chin. J. Inorg. Chem.16, 84–88.
  • Li, J., Zhang, F.-X. & Shi, Q.-Z. (2002). Chin. J. Inorg. Chem.18, 643–645.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography