PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): m565.
Published online 2010 April 24. doi:  10.1107/S1600536810014054
PMCID: PMC2979043

Dichlorido[(R,R)-N 1,N 1,N 2-tribenzyl­cyclo­hexane-1,2-diamine-κ2 N 1,N 2]copper(II)

Abstract

In the title compound, [CuCl2(C27H32N2)], which bears a chiral diamine ligand, viz (R,R)-N,N,N′′- tribenzyl­cyclo­hexane-1,2-diamine, the CuII ion is ligated by two N and two Cl atoms in a distorted square-planar geometry. The coordination of the ligands to the CuII ion results in the formation of a five-membered heterocyclic ring and a chiral center at the monosubstituted nitro­gen in an (S)-configuration. The catalytic capacity of the complex for the asymmetric nitro­aldol reaction is promising (49% ee).

Related literature

For the synthesis of N,N,N′′-tribenzyl-(R,R)-1,2-diamino­cyclo­hexane, see: Tye et al. (2002 [triangle]); Boyd et al. (2005 [triangle]). For related structures, see: Alexakis et al. (2001 [triangle]); Tye et al. (2002 [triangle]); Boyd et al. (2005 [triangle], 2006 [triangle]); Arjan et al. (2005 [triangle]); Brethon et al. (2004 [triangle]); Jones & Mahon (2008 [triangle]); Evans & Seidel (2005 [triangle]); Evans et al. (2007 [triangle]); Roh et al. (2004 [triangle]); Nguyen & Jeong (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m565-scheme1.jpg

Experimental

Crystal data

  • [CuCl2(C27H32N2)]
  • M r = 519.00
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m565-efi1.jpg
  • a = 10.5806 (7) Å
  • b = 15.4409 (8) Å
  • c = 16.2579 (12) Å
  • V = 2656.1 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 295 K
  • 0.40 × 0.40 × 0.40 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: analytical (ABSCALC; McArdle & Daly, 1999 [triangle]) T min = 0.660, T max = 0.666
  • 5793 measured reflections
  • 4931 independent reflections
  • 3885 reflections with I > 2σ(I)
  • R int = 0.019
  • 3 standard reflections every 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.083
  • S = 1.06
  • 4931 reflections
  • 292 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle])
  • Flack parameter: −0.017 (13)

Data collection: CAD4 (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD4; data reduction: XCAD (McArdle, 1999 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810014054/rk2198sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810014054/rk2198Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Kyungpook National University Research Fund, 2008.

supplementary crystallographic information

Comment

Disubstituted, trisubstituted and tetrasubstituted (R,R)-1,2- diaminocyclohexane were synthesized (Alexakis et al., 2001; Tye et al., 2002; Boyd et al., 2005, 2006; Arjan et al., 2005). Especially disubstituted chiral diamine ligands with Rh (Brethon et al., 2004; Jones & Mahon, 2008), Ni (Evans & Seidel, 2005; Evans et al., 2007), Zn (Roh et al., 2004; Nguyen & Jeong, 2008a), Cu (Nguyen & Jeong, 2008b) were extensively applied in asymmetric synthesis. However, the coordination chemistry and application of asymmetric trisubstituted chiral 1,2-diaminocyclohexanes containing a secondary and a tertiary amines had not attended much. In this study, a new complex of Cu(II) containing N,N,N'-tribenzyl-(R,R)-1,2- diaminocyclohexane (Tye et al., 2002; Boyd et al., 2005) was synthesized and its molecular and crystal structures were determined.

Also, capability of the complex as an enantioselective catalyst for asymmetric nitroaldol reaction was examined. The copper ion was ligated by two nitrogen and two chloride atoms in distorted square-planar geometry. The coordination of the ligands to the Cu ion induced a 5–membered heterocyclic ring and a chiral center at monosubstituted nitrogen in (S)-configuration. Catalytic capacity of the complex for asymmetric nitroaldol reaction was promising (49% ee {ee = [R - S/ R+S] x 100 or [S - R/ R+S] x 100}).

Experimental

A solution of N,N,N'-tribenzyl-(R,R)- 1,2-diaminocyclohexane (1.57 g, 4.08 mmol) in ethanol (5 ml) was added slowly to a solution of CuCl2.2H2O (0.69 g, 4.01 mmol) in ethanol (10 ml) Tye et al., (2002); Boyd et al., (2005). The mixture was stirred overnight at ambient temperature. The solvent was removed to yield blue solids. The product was re–crystallized from anhydrous ethanol to afford blue crystals (1.64 g, yield 79%). Anal. Calc. for C27H32Cl2CuN2: C 62.48, H 6.21, N 5.40 and found: C 62.20, H 6.30, N 5.46%.

Refinement

H–atom of N—H was refined with Uiso(H) = 1.2Ueq(N). All H–atoms placed on C atoms were positioned geometrically and refined using a riding model with C—H = 0.97Å for methylene, C—H = 0.98Å for methine, C—H = 0.93Å for aromatic H atoms. For all H atoms Uiso(H) = 1.2Ueq(C).

In the crystal structure was found 'accessible void' with volume 54.00Å3.

Figures

Fig. 1.
A view of title compound molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are presented as a small spheres of arbitrary radius.

Crystal data

[CuCl2(C27H32N2)]F(000) = 1084
Mr = 519.00Dx = 1.298 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 10.5806 (7) Åθ = 10–13°
b = 15.4409 (8) ŵ = 1.04 mm1
c = 16.2579 (12) ÅT = 295 K
V = 2656.1 (3) Å3Block, blue
Z = 40.40 × 0.40 × 0.40 mm

Data collection

Enraf–Nonius CAD-4 diffractometer3885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
graphiteθmax = 25.5°, θmin = 1.8°
ω/2θ scansh = −12→12
Absorption correction: analytical (ABSCALC; McArdle & Daly, 1999)k = −18→18
Tmin = 0.660, Tmax = 0.666l = −19→19
5793 measured reflections3 standard reflections every 60 min
4931 independent reflections intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.0488P)2] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4931 reflectionsΔρmax = 0.33 e Å3
292 parametersΔρmin = −0.24 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.017 (13)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.03338 (3)0.43742 (2)0.76295 (2)0.03853 (10)
Cl1−0.03484 (8)0.33981 (5)0.85529 (5)0.05231 (19)
Cl2−0.10262 (9)0.40812 (6)0.66326 (6)0.0609 (2)
N10.0744 (2)0.56146 (15)0.72591 (14)0.0361 (5)
N20.2032 (2)0.43863 (17)0.81961 (17)0.0403 (5)
H20.193 (3)0.438 (2)0.871 (2)0.048*
C10.1701 (3)0.59164 (18)0.78886 (17)0.0352 (6)
H10.12340.59820.84060.042*
C20.2323 (3)0.67928 (19)0.7726 (2)0.0476 (7)
H2A0.28620.67550.72450.057*
H2B0.16790.72260.76210.057*
C30.3099 (4)0.7054 (2)0.8468 (2)0.0561 (9)
H3A0.34900.76120.83680.067*
H3B0.25520.71080.89440.067*
C40.4109 (3)0.6388 (2)0.8639 (2)0.0602 (9)
H4A0.45810.65560.91250.072*
H4B0.46920.63660.81790.072*
C50.3532 (3)0.5492 (2)0.8772 (2)0.0489 (8)
H5A0.30280.54980.92710.059*
H5B0.42040.50720.88450.059*
C60.2699 (3)0.52161 (18)0.8048 (2)0.0373 (7)
H60.32290.51560.75570.045*
C7−0.0463 (3)0.61569 (18)0.73180 (19)0.0433 (7)
H7A−0.02670.67390.71350.052*
H7B−0.10750.59190.69360.052*
C8−0.1073 (3)0.62181 (19)0.8143 (2)0.0428 (7)
C9−0.1934 (3)0.5605 (2)0.8410 (2)0.0544 (8)
H9−0.20950.51220.80850.065*
C10−0.2553 (3)0.5697 (3)0.9143 (3)0.0645 (10)
H10−0.31080.52670.93170.077*
C11−0.2371 (4)0.6404 (3)0.9621 (2)0.0628 (10)
H11−0.28120.64691.01120.075*
C12−0.1515 (4)0.7031 (3)0.9366 (2)0.0609 (10)
H12−0.13730.75170.96920.073*
C13−0.0880 (4)0.6938 (2)0.8638 (2)0.0530 (9)
H13−0.03120.73640.84730.064*
C140.1132 (3)0.5719 (2)0.63786 (17)0.0465 (7)
H14A0.12320.63330.62730.056*
H14B0.04380.55180.60380.056*
C150.2318 (3)0.5269 (2)0.60886 (19)0.0502 (8)
C160.2368 (4)0.4375 (3)0.59948 (19)0.0564 (8)
H160.16690.40390.61270.068*
C170.3453 (4)0.3988 (3)0.5705 (3)0.0759 (12)
H170.34950.33880.56640.091*
C180.4472 (5)0.4482 (4)0.5478 (3)0.1003 (17)
H180.52020.42160.52840.120*
C190.4416 (5)0.5367 (4)0.5536 (3)0.0976 (17)
H190.50980.57030.53680.117*
C200.3350 (4)0.5754 (3)0.5844 (2)0.0744 (12)
H200.33200.63540.58880.089*
C210.2727 (3)0.3570 (2)0.7986 (2)0.0551 (9)
H21A0.21840.30820.81140.066*
H21B0.28740.35620.73970.066*
C220.3962 (3)0.34379 (19)0.8410 (2)0.0432 (7)
C230.4030 (4)0.3147 (3)0.9210 (2)0.0631 (10)
H230.32920.30160.94950.076*
C240.5196 (5)0.3048 (2)0.9596 (2)0.0737 (12)
H240.52380.28491.01350.088*
C250.6279 (4)0.3247 (3)0.9178 (3)0.0705 (12)
H250.70560.31970.94400.085*
C260.6229 (3)0.3515 (2)0.8387 (3)0.0621 (10)
H260.69700.36280.80990.075*
C270.5094 (3)0.3617 (2)0.8020 (2)0.0517 (8)
H270.50730.38160.74800.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.03398 (17)0.03603 (16)0.04556 (19)0.00039 (16)−0.00646 (17)−0.00163 (15)
Cl10.0463 (4)0.0478 (4)0.0629 (5)−0.0078 (4)−0.0052 (4)0.0079 (3)
Cl20.0622 (5)0.0594 (5)0.0612 (5)−0.0084 (4)−0.0245 (4)−0.0054 (4)
N10.0349 (11)0.0387 (11)0.0348 (12)0.0045 (10)−0.0041 (9)−0.0005 (11)
N20.0347 (12)0.0368 (12)0.0494 (14)0.0047 (12)−0.0050 (11)−0.0005 (13)
C10.0369 (15)0.0370 (15)0.0317 (15)0.0021 (12)−0.0037 (12)−0.0027 (11)
C20.0491 (17)0.0375 (15)0.0563 (19)−0.0031 (13)−0.0058 (16)−0.0004 (15)
C30.060 (2)0.0404 (18)0.068 (2)−0.0031 (16)−0.0085 (19)−0.0075 (16)
C40.0491 (19)0.056 (2)0.075 (2)−0.0027 (17)−0.0152 (18)−0.0130 (18)
C50.0405 (17)0.046 (2)0.060 (2)0.0053 (14)−0.0171 (15)−0.0075 (15)
C60.0308 (15)0.0376 (15)0.0435 (17)0.0020 (13)−0.0003 (13)−0.0048 (13)
C70.0416 (16)0.0432 (15)0.0452 (15)0.0113 (13)−0.0069 (16)0.0001 (13)
C80.0360 (16)0.0383 (16)0.0540 (19)0.0081 (14)−0.0024 (15)0.0009 (14)
C90.0398 (17)0.0482 (18)0.075 (2)−0.0005 (17)−0.0008 (17)−0.0117 (19)
C100.0439 (19)0.062 (2)0.087 (3)−0.0029 (19)0.0155 (18)0.007 (2)
C110.058 (2)0.071 (3)0.060 (2)0.016 (2)0.0131 (18)0.004 (2)
C120.070 (2)0.055 (2)0.057 (2)0.0071 (19)0.0078 (19)−0.0099 (17)
C130.061 (2)0.0385 (17)0.059 (2)0.0054 (15)0.0057 (17)0.0001 (15)
C140.0547 (18)0.0492 (18)0.0357 (15)0.0029 (17)0.0005 (14)0.0012 (14)
C150.061 (2)0.058 (2)0.0313 (16)−0.0050 (17)0.0085 (15)−0.0060 (14)
C160.065 (2)0.061 (2)0.0434 (18)−0.002 (2)0.0110 (15)−0.0125 (18)
C170.081 (3)0.075 (3)0.072 (3)0.008 (2)0.012 (2)−0.027 (2)
C180.075 (3)0.127 (4)0.099 (3)0.005 (3)0.036 (3)−0.035 (3)
C190.082 (3)0.115 (4)0.096 (3)−0.022 (3)0.047 (3)−0.017 (3)
C200.085 (3)0.076 (3)0.062 (2)−0.015 (2)0.029 (2)−0.006 (2)
C210.0438 (19)0.0413 (18)0.080 (2)0.0136 (15)−0.0093 (18)−0.0090 (17)
C220.0367 (16)0.0350 (15)0.058 (2)0.0057 (13)0.0038 (15)0.0010 (14)
C230.059 (2)0.061 (2)0.070 (3)0.0144 (19)0.020 (2)0.0199 (19)
C240.096 (3)0.071 (3)0.055 (2)0.030 (3)−0.005 (2)0.0129 (18)
C250.054 (2)0.071 (3)0.086 (3)0.019 (2)−0.017 (2)−0.008 (2)
C260.0404 (19)0.050 (2)0.096 (3)0.0027 (16)0.008 (2)−0.001 (2)
C270.046 (2)0.0439 (17)0.065 (2)0.0104 (14)0.0076 (16)0.0028 (15)

Geometric parameters (Å, °)

Cu—N22.019 (2)C10—H100.9300
Cu—N12.054 (2)C11—C121.389 (5)
Cu—Cl22.2141 (9)C11—H110.9300
Cu—Cl12.2463 (8)C12—C131.369 (5)
N1—C141.498 (4)C12—H120.9300
N1—C11.513 (3)C13—H130.9300
N1—C71.530 (3)C14—C151.511 (5)
N2—C61.482 (4)C14—H14A0.9700
N2—C211.499 (4)C14—H14B0.9700
N2—H20.85 (3)C15—C201.383 (5)
C1—C21.528 (4)C15—C161.389 (5)
C1—C61.533 (4)C16—C171.377 (5)
C1—H10.9800C16—H160.9300
C2—C31.513 (5)C17—C181.371 (6)
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—C191.371 (7)
C3—C41.509 (5)C18—H180.9300
C3—H3A0.9700C19—C201.371 (6)
C3—H3B0.9700C19—H190.9300
C4—C51.528 (5)C20—H200.9300
C4—H4A0.9700C21—C221.492 (5)
C4—H4B0.9700C21—H21A0.9700
C5—C61.531 (4)C21—H21B0.9700
C5—H5A0.9700C22—C231.379 (5)
C5—H5B0.9700C22—C271.383 (4)
C6—H60.9800C23—C241.392 (6)
C7—C81.492 (4)C23—H230.9300
C7—H7A0.9700C24—C251.366 (6)
C7—H7B0.9700C24—H240.9300
C8—C91.383 (5)C25—C261.352 (6)
C8—C131.388 (5)C25—H250.9300
C9—C101.368 (5)C26—C271.350 (5)
C9—H90.9300C26—H260.9300
C10—C111.354 (6)C27—H270.9300
N2—Cu—N186.39 (10)C10—C9—C8121.2 (4)
N2—Cu—Cl2156.09 (8)C10—C9—H9119.4
N1—Cu—Cl296.50 (7)C8—C9—H9119.4
N2—Cu—Cl189.27 (8)C11—C10—C9121.1 (4)
N1—Cu—Cl1152.80 (7)C11—C10—H10119.5
Cl2—Cu—Cl198.24 (4)C9—C10—H10119.5
C14—N1—C1115.5 (2)C10—C11—C12118.9 (4)
C14—N1—C7103.3 (2)C10—C11—H11120.5
C1—N1—C7110.3 (2)C12—C11—H11120.5
C14—N1—Cu115.99 (19)C13—C12—C11120.4 (4)
C1—N1—Cu103.32 (16)C13—C12—H12119.8
C7—N1—Cu108.40 (17)C11—C12—H12119.8
C6—N2—C21117.2 (2)C12—C13—C8120.9 (3)
C6—N2—Cu110.95 (18)C12—C13—H13119.6
C21—N2—Cu108.9 (2)C8—C13—H13119.6
C6—N2—H2103 (2)N1—C14—C15118.5 (3)
C21—N2—H2106 (2)N1—C14—H14A107.7
Cu—N2—H2110 (2)C15—C14—H14A107.7
N1—C1—C2116.4 (2)N1—C14—H14B107.7
N1—C1—C6111.0 (2)C15—C14—H14B107.7
C2—C1—C6111.0 (2)H14A—C14—H14B107.1
N1—C1—H1105.9C20—C15—C16118.5 (3)
C2—C1—H1105.9C20—C15—C14119.8 (3)
C6—C1—H1105.9C16—C15—C14121.5 (3)
C3—C2—C1109.4 (3)C17—C16—C15120.0 (4)
C3—C2—H2A109.8C17—C16—H16120.0
C1—C2—H2A109.8C15—C16—H16120.0
C3—C2—H2B109.8C18—C17—C16120.4 (4)
C1—C2—H2B109.8C18—C17—H17119.8
H2A—C2—H2B108.2C16—C17—H17119.8
C4—C3—C2110.5 (3)C19—C18—C17120.1 (5)
C4—C3—H3A109.6C19—C18—H18119.9
C2—C3—H3A109.6C17—C18—H18119.9
C4—C3—H3B109.6C18—C19—C20119.7 (5)
C2—C3—H3B109.6C18—C19—H19120.2
H3A—C3—H3B108.1C20—C19—H19120.2
C3—C4—C5111.1 (3)C19—C20—C15121.2 (4)
C3—C4—H4A109.4C19—C20—H20119.4
C5—C4—H4A109.4C15—C20—H20119.4
C3—C4—H4B109.4C22—C21—N2116.0 (3)
C5—C4—H4B109.4C22—C21—H21A108.3
H4A—C4—H4B108.0N2—C21—H21A108.3
C4—C5—C6111.9 (3)C22—C21—H21B108.3
C4—C5—H5A109.2N2—C21—H21B108.3
C6—C5—H5A109.2H21A—C21—H21B107.4
C4—C5—H5B109.2C23—C22—C27116.9 (3)
C6—C5—H5B109.2C23—C22—C21121.8 (3)
H5A—C5—H5B107.9C27—C22—C21121.3 (3)
N2—C6—C5112.9 (3)C22—C23—C24120.5 (4)
N2—C6—C1108.0 (2)C22—C23—H23119.8
C5—C6—C1109.3 (2)C24—C23—H23119.8
N2—C6—H6108.8C25—C24—C23119.6 (3)
C5—C6—H6108.8C25—C24—H24120.2
C1—C6—H6108.8C23—C24—H24120.2
C8—C7—N1116.9 (2)C26—C25—C24120.6 (4)
C8—C7—H7A108.1C26—C25—H25119.7
N1—C7—H7A108.1C24—C25—H25119.7
C8—C7—H7B108.1C27—C26—C25119.4 (4)
N1—C7—H7B108.1C27—C26—H26120.3
H7A—C7—H7B107.3C25—C26—H26120.3
C9—C8—C13117.6 (3)C26—C27—C22123.0 (3)
C9—C8—C7121.6 (3)C26—C27—H27118.5
C13—C8—C7120.6 (3)C22—C27—H27118.5
N2—Cu—N1—C14104.1 (2)C1—N1—C7—C8−53.7 (3)
Cl2—Cu—N1—C14−52.04 (19)Cu—N1—C7—C858.8 (3)
Cl1—Cu—N1—C14−174.54 (15)N1—C7—C8—C9−86.8 (3)
N2—Cu—N1—C1−23.25 (17)N1—C7—C8—C1399.2 (3)
Cl2—Cu—N1—C1−179.41 (15)C13—C8—C9—C10−1.4 (5)
Cl1—Cu—N1—C158.1 (2)C7—C8—C9—C10−175.5 (3)
N2—Cu—N1—C7−140.32 (18)C8—C9—C10—C112.0 (6)
Cl2—Cu—N1—C763.51 (17)C9—C10—C11—C12−1.7 (6)
Cl1—Cu—N1—C7−59.0 (2)C10—C11—C12—C130.8 (6)
N1—Cu—N2—C6−1.8 (2)C11—C12—C13—C8−0.3 (6)
Cl2—Cu—N2—C696.1 (3)C9—C8—C13—C120.5 (5)
Cl1—Cu—N2—C6−154.94 (19)C7—C8—C13—C12174.8 (3)
N1—Cu—N2—C21−132.2 (2)C1—N1—C14—C1559.0 (4)
Cl2—Cu—N2—C21−34.3 (3)C7—N1—C14—C15179.6 (3)
Cl1—Cu—N2—C2174.7 (2)Cu—N1—C14—C15−62.0 (3)
C14—N1—C1—C245.3 (3)N1—C14—C15—C20−114.2 (4)
C7—N1—C1—C2−71.3 (3)N1—C14—C15—C1671.3 (4)
Cu—N1—C1—C2173.0 (2)C20—C15—C16—C173.5 (5)
C14—N1—C1—C6−82.8 (3)C14—C15—C16—C17178.0 (3)
C7—N1—C1—C6160.6 (2)C15—C16—C17—C18−2.5 (6)
Cu—N1—C1—C644.9 (2)C16—C17—C18—C19−0.1 (8)
N1—C1—C2—C3171.8 (3)C17—C18—C19—C201.7 (8)
C6—C1—C2—C3−60.1 (3)C18—C19—C20—C15−0.7 (8)
C1—C2—C3—C459.6 (4)C16—C15—C20—C19−1.9 (6)
C2—C3—C4—C5−57.4 (4)C14—C15—C20—C19−176.5 (4)
C3—C4—C5—C655.2 (4)C6—N2—C21—C2257.9 (4)
C21—N2—C6—C5−86.4 (3)Cu—N2—C21—C22−175.2 (3)
Cu—N2—C6—C5147.6 (2)N2—C21—C22—C2378.9 (4)
C21—N2—C6—C1152.6 (3)N2—C21—C22—C27−100.0 (4)
Cu—N2—C6—C126.6 (3)C27—C22—C23—C240.3 (5)
C4—C5—C6—N2−174.6 (3)C21—C22—C23—C24−178.6 (3)
C4—C5—C6—C1−54.3 (4)C22—C23—C24—C250.4 (6)
N1—C1—C6—N2−48.7 (3)C23—C24—C25—C26−1.8 (6)
C2—C1—C6—N2−179.7 (2)C24—C25—C26—C272.4 (6)
N1—C1—C6—C5−171.9 (2)C25—C26—C27—C22−1.7 (6)
C2—C1—C6—C557.1 (3)C23—C22—C27—C260.3 (5)
C14—N1—C7—C8−177.7 (3)C21—C22—C27—C26179.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2198).

References

  • Alexakis, A., Chauvin, A. S., Stouvenel, R., Vrancken, E., Mutti, S. & Mangeney, P. (2001). Tetrahedron: Asymmetry, 12, 1171–1178.
  • Arjan, H., Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett.46, 1921–1925.
  • Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Motevalli, M., Stenson, R. A. & Suggate, M. J. (2006). J. Chem. Crystallogr.36, 263–269.
  • Boyd, E., Coumbarides, G. S., Eames, J., Jones, R. V. H., Stenson, R. A. & Suggate, M. J. (2005). Tetrahedron Lett.46, 3479–3484.
  • Brethon, A., Moreau, J. J. E. & Man, M. W. C. (2004). Tetrahedron: Asymmetry, 15, 495–502.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Evans, D. A., Mito, S. & Seidel, D. (2007). J. Am. Chem. Soc.129, 11583–11592. [PubMed]
  • Evans, D. A. & Seidel, D. (2005). J. Am. Chem. Soc.127, 9958–9959. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jones, M. D. & Mahon, M. F. (2008). J. Organomet. Chem.693, 2377–2382.
  • McArdle, P. (1999). XCAD National University of Ireland, Galway, Ireland.
  • McArdle, P. & Daly, P. (1999). ABSCALC National University of Ireland, Galway, Ireland.
  • Nguyen, Q. T. & Jeong, J. H. (2008a). Bull. Korean Chem. Soc.29, 483–486.
  • Nguyen, Q. T. & Jeong, J. H. (2008b). Polyhedron, 27, 3227–3230.
  • Roh, S. G., Yoon, J. U. & Jeong, J. H. (2004). Polyhedron, 23, 2063–2067.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tye, H., Eldred, C. & Wills, M. (2002). Tetrahedron Lett.43, 155–158.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography