PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1220.
Published online 2010 April 30. doi:  10.1107/S1600536810015163
PMCID: PMC2979038

N-(3-Chloro­phen­yl)-1,2-benzisothia­zol-3-amine 1,1-dioxide

Abstract

In the title compound, C13H9ClN2O2S, the dihedral angle between the aromatic ring systems is 6.00 (12)° and an intra­molecular C—H(...)N inter­action generates an S(6) ring. In the crystal, mol­ecules inter­act by way of C—H(...)O and N—H(...)O bonds, generating R 2 1(7) and R 2 2(10) ring motifs, and aromatic π–π stacking inter­actions [centroid–centroid separations = 3.730 (3) and 3.733 (2) Å] help to consolidate the packing.

Related literature

For other saccharin derivatives, see: Rafique et al. (2009 [triangle]); Siddiqui et al. (2010 [triangle]). For a related structure, see: Brigas et al. (2001 [triangle]). For graph-set theory, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1220-scheme1.jpg

Experimental

Crystal data

  • C13H9ClN2O2S
  • M r = 292.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1220-efi1.jpg
  • a = 7.2223 (10) Å
  • b = 7.9138 (12) Å
  • c = 11.2175 (17) Å
  • α = 96.178 (6)°
  • β = 98.840 (5)°
  • γ = 97.574 (5)°
  • V = 622.63 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 296 K
  • 0.28 × 0.10 × 0.08 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.947, T max = 0.962
  • 10481 measured reflections
  • 2700 independent reflections
  • 1244 reflections with I > 2σ(I)
  • R int = 0.088

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.115
  • S = 0.98
  • 2700 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015163/hb5389sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015163/hb5389Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. The authors also acknowledge technical support provided by Bana Inter­national, Karachi, Pakistan.

supplementary crystallographic information

Comment

Due to the interest in obtaining new derivatives of saccharin (Rafique et al., 2009: Siddiqui et al., 2010), we wish to report the preparation and crystal structure of the title compound (I, Fig. 1).

The crystal structure of (II) N-(1,1-Dioxo-1,2-benzisothiazol-3-yl)-4- methoxyaniline (Brigas et al., 2001) and (III) N-(1,1-Dioxo-1,2-benzisothiazol-3-yl)-3-methylaniline (Brigas et al., 2001) have been published. The title compound differs from (II) and (III) due to attachement of chloro substition on the aniline. In (I), 1,2-benzisothiazol-3-amine A (C–C7/N2/S1) and 3-Chlorophenyl B (C8–C13/CL1) are planar with maximum r. m. s. deviations of 0.0080 Å and 0.0033 Å from the respective mean square planes. The dihedral angle between A/B is 6.00 (12)°. There exists an intramolecular H-bonding of C–H···N type forming S(6) ring motif (Bernstein et al., 1995). The molecules are stabilized in the form of polymeric sheets due to intermolecular H-bondings (Table 1, Fig. 2) completing R21(7) and R22(10) ring motifs. There exist π–π interactions at a distance of 3.733 (2) Å and 3.730 (2) Å, between the centroids of the benzene rings Cg1 (C1—C6) and Cg2 (C8—C13) respectively, [Cg1···Cg1i: i = 2 - x,-y, 1 - z] and [Cg2···Cg2ii: ii = 1 - x,-y, - z].

Experimental

A mixture of saccharin (1.0 g, 5.46 mmol) and m-chloroaniline (5 ml, in excess) was heated to reflux on an oil-bath (4 h), cooled to room temperature and kept overnight in a freezer. The solvent was evaporated under reduced pressure and the brownish yellow paste obtained was washed with benzene (4 × 25 ml) to obtain the bright light brown crystalline product (1.25, 78%, m. p. 578-579 K). Recrystallisation solvent: MeOH:AcOEt (1:1): the solution was subjected to slow evaporation at room temperature to obtain colourless needles of (I).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93, N–H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The partial packing of (I), which shows that molecules form polymeric sheets with various ring motifs.

Crystal data

C13H9ClN2O2SZ = 2
Mr = 292.73F(000) = 300
Triclinic, P1Dx = 1.561 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2223 (10) ÅCell parameters from 1244 reflections
b = 7.9138 (12) Åθ = 2.6–27.1°
c = 11.2175 (17) ŵ = 0.47 mm1
α = 96.178 (6)°T = 296 K
β = 98.840 (5)°Needle, colourless
γ = 97.574 (5)°0.28 × 0.10 × 0.08 mm
V = 622.63 (16) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer2700 independent reflections
Radiation source: fine-focus sealed tube1244 reflections with I > 2σ(I)
graphiteRint = 0.088
Detector resolution: 7.60 pixels mm-1θmax = 27.1°, θmin = 2.6°
ω scansh = −8→9
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −10→10
Tmin = 0.947, Tmax = 0.962l = −14→14
10481 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0363P)2] where P = (Fo2 + 2Fc2)/3
2700 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.1663 (5)0.2836 (4)0.4969 (3)0.0380 (9)
C21.2431 (5)0.3741 (5)0.6082 (3)0.0512 (11)
H21.37190.41620.62780.061*
C31.1225 (6)0.4010 (5)0.6905 (3)0.0566 (12)
H31.17050.46250.76680.068*
C40.9329 (6)0.3379 (5)0.6609 (4)0.0557 (11)
H40.85420.35720.71770.067*
C50.8563 (5)0.2460 (5)0.5481 (3)0.0466 (10)
H50.72750.20380.52890.056*
C60.9745 (5)0.2185 (4)0.4651 (3)0.0352 (9)
C70.9368 (5)0.1246 (4)0.3407 (3)0.0374 (9)
C80.6944 (4)−0.0592 (4)0.1789 (3)0.0361 (9)
C90.5043 (5)−0.1312 (5)0.1558 (3)0.0426 (10)
H90.4257−0.10740.21190.051*
C100.4338 (5)−0.2380 (5)0.0491 (3)0.0415 (10)
C110.5448 (5)−0.2769 (5)−0.0357 (3)0.0482 (10)
H110.4944−0.3497−0.10730.058*
C120.7330 (5)−0.2050 (5)−0.0116 (3)0.0485 (11)
H120.8109−0.2302−0.06770.058*
C130.8080 (5)−0.0967 (5)0.0939 (3)0.0457 (10)
H130.9353−0.04850.10810.055*
Cl10.19425 (13)−0.32624 (14)0.02129 (9)0.0658 (4)
N10.7608 (4)0.0472 (4)0.2912 (3)0.0417 (8)
H10.67510.06500.33450.050*
N21.0821 (4)0.1190 (4)0.2841 (3)0.0428 (8)
O11.4055 (3)0.1090 (3)0.4010 (2)0.0619 (8)
O21.3450 (4)0.3710 (3)0.3184 (2)0.0645 (8)
S11.27387 (13)0.22471 (14)0.37119 (9)0.0481 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.029 (2)0.039 (2)0.041 (2)−0.0055 (17)0.0023 (17)0.0026 (19)
C20.044 (2)0.052 (3)0.047 (3)−0.011 (2)−0.003 (2)−0.001 (2)
C30.062 (3)0.062 (3)0.039 (3)−0.004 (2)0.002 (2)−0.002 (2)
C40.056 (3)0.063 (3)0.045 (3)−0.001 (2)0.013 (2)−0.001 (2)
C50.036 (2)0.059 (3)0.041 (2)−0.0003 (19)0.0038 (19)0.002 (2)
C60.033 (2)0.039 (2)0.033 (2)0.0038 (17)0.0032 (17)0.0035 (19)
C70.028 (2)0.037 (2)0.043 (2)−0.0002 (17)0.0007 (17)0.0000 (19)
C80.028 (2)0.040 (2)0.036 (2)0.0022 (17)0.0018 (17)−0.0021 (19)
C90.030 (2)0.048 (3)0.047 (3)−0.0001 (18)0.0107 (18)−0.005 (2)
C100.027 (2)0.042 (3)0.049 (3)−0.0019 (17)0.0015 (18)−0.005 (2)
C110.040 (2)0.054 (3)0.044 (2)−0.0013 (19)0.0037 (19)−0.010 (2)
C120.036 (2)0.064 (3)0.042 (2)0.002 (2)0.0083 (19)−0.007 (2)
C130.024 (2)0.065 (3)0.044 (2)0.0020 (18)0.0045 (18)0.001 (2)
Cl10.0325 (6)0.0807 (9)0.0706 (8)−0.0122 (5)0.0055 (5)−0.0205 (6)
N10.0249 (16)0.054 (2)0.0411 (19)−0.0042 (14)0.0069 (14)−0.0036 (16)
N20.0248 (16)0.057 (2)0.0421 (19)−0.0024 (14)0.0065 (14)−0.0062 (16)
O10.0289 (15)0.077 (2)0.073 (2)0.0088 (14)0.0005 (13)−0.0092 (17)
O20.0539 (18)0.070 (2)0.0632 (19)−0.0227 (15)0.0210 (15)0.0020 (16)
S10.0261 (5)0.0609 (8)0.0494 (7)−0.0073 (5)0.0045 (5)−0.0087 (6)

Geometric parameters (Å, °)

C1—C21.367 (5)C8—C91.389 (4)
C1—C61.390 (4)C8—N11.417 (4)
C1—S11.760 (4)C9—C101.374 (5)
C2—C31.382 (5)C9—H90.9300
C2—H20.9300C10—C111.370 (5)
C3—C41.371 (5)C10—Cl11.746 (3)
C3—H30.9300C11—C121.376 (4)
C4—C51.384 (5)C11—H110.9300
C4—H40.9300C12—C131.375 (5)
C5—C61.376 (4)C12—H120.9300
C5—H50.9300C13—H130.9300
C6—C71.477 (5)N1—H10.8600
C7—N21.310 (4)N2—S11.635 (3)
C7—N11.343 (4)O1—S11.432 (3)
C8—C131.384 (4)O2—S11.428 (3)
C2—C1—C6122.5 (3)C10—C9—H9120.4
C2—C1—S1130.4 (3)C8—C9—H9120.4
C6—C1—S1107.1 (3)C11—C10—C9122.3 (3)
C1—C2—C3117.7 (4)C11—C10—Cl1119.2 (3)
C1—C2—H2121.2C9—C10—Cl1118.5 (3)
C3—C2—H2121.2C10—C11—C12118.0 (3)
C4—C3—C2120.7 (4)C10—C11—H11121.0
C4—C3—H3119.6C12—C11—H11121.0
C2—C3—H3119.6C13—C12—C11121.3 (3)
C3—C4—C5121.3 (4)C13—C12—H12119.3
C3—C4—H4119.4C11—C12—H12119.3
C5—C4—H4119.4C12—C13—C8120.0 (3)
C6—C5—C4118.7 (4)C12—C13—H13120.0
C6—C5—H5120.7C8—C13—H13120.0
C4—C5—H5120.7C7—N1—C8130.1 (3)
C5—C6—C1119.2 (3)C7—N1—H1115.0
C5—C6—C7131.3 (3)C8—N1—H1115.0
C1—C6—C7109.5 (3)C7—N2—S1109.9 (2)
N2—C7—N1122.9 (3)O2—S1—O1115.88 (17)
N2—C7—C6116.9 (3)O2—S1—N2110.41 (16)
N1—C7—C6120.2 (3)O1—S1—N2109.76 (16)
C13—C8—C9119.3 (3)O2—S1—C1111.86 (17)
C13—C8—N1123.8 (3)O1—S1—C1110.64 (17)
C9—C8—N1116.9 (3)N2—S1—C196.63 (15)
C10—C9—C8119.1 (3)
C6—C1—C2—C3−0.3 (6)Cl1—C10—C11—C12179.7 (3)
S1—C1—C2—C3−179.8 (3)C10—C11—C12—C13−0.3 (6)
C1—C2—C3—C40.3 (6)C11—C12—C13—C80.6 (6)
C2—C3—C4—C5−0.1 (6)C9—C8—C13—C12−0.5 (5)
C3—C4—C5—C60.0 (6)N1—C8—C13—C12178.3 (3)
C4—C5—C6—C1−0.1 (5)N2—C7—N1—C84.0 (6)
C4—C5—C6—C7178.8 (4)C6—C7—N1—C8−174.8 (3)
C2—C1—C6—C50.2 (6)C13—C8—N1—C7−3.2 (6)
S1—C1—C6—C5179.8 (3)C9—C8—N1—C7175.6 (3)
C2—C1—C6—C7−178.9 (3)N1—C7—N2—S1−179.4 (3)
S1—C1—C6—C70.8 (4)C6—C7—N2—S1−0.6 (4)
C5—C6—C7—N2−179.1 (4)C7—N2—S1—O2−115.4 (3)
C1—C6—C7—N2−0.1 (4)C7—N2—S1—O1115.7 (3)
C5—C6—C7—N1−0.2 (6)C7—N2—S1—C10.9 (3)
C1—C6—C7—N1178.7 (3)C2—C1—S1—O2−66.3 (4)
C13—C8—C9—C100.1 (5)C6—C1—S1—O2114.1 (3)
N1—C8—C9—C10−178.8 (3)C2—C1—S1—O164.5 (4)
C8—C9—C10—C110.2 (6)C6—C1—S1—O1−115.0 (3)
C8—C9—C10—Cl1−179.6 (3)C2—C1—S1—N2178.6 (4)
C9—C10—C11—C12−0.1 (6)C6—C1—S1—N2−1.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···N20.932.282.901 (5)124
N1—H1···O1i0.862.243.084 (4)165
C5—H5···O1i0.932.513.396 (4)159
C2—H2···O2ii0.932.423.302 (4)158

Symmetry codes: (i) x−1, y, z; (ii) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5389).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brigas, A. F., Clegg, W., Dillon, C. J., Fonseca, C. F. C. & Johnstone, R. A. W. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1315–1324.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Rafique, M., Hussain, G., Siddiqui, W. A. & Tahir, M. N. (2009). Acta Cryst. E65, o1883. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, T. & Parvez, M. (2010). J. Chem. Crystallogr.40, 116–121.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography