PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 May 1; 66(Pt 5): o1022.
Published online 2010 April 2. doi:  10.1107/S1600536810011864
PMCID: PMC2979035

4-Nitro-N′-[(1E,2E)-3-phenyl­prop-2-en-1-yl­idene]benzohydrazide

Abstract

In the title mol­ecule, C16H13N3O3, the benzene and phenyl rings are linked through a propenyl­idene hydrazide fragment, C—C(=O)—N(H)—N=C(H)—C(H)=C(H)—, which is fully extended with torsion angles in the range 175.4 (2)–179.9 (2)°. The dihedral angle between the the benzene and phenyl rings is 58.28 (7)°. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains along the b axis and additional stabilization is provided by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the synthesis of related compounds, see: Ahmad et al. (2010 [triangle]); Küçükgüzel et al. (2007 [triangle]); Navidpour et al. (2006 [triangle]); Stocks et al. (2004 [triangle]). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009 [triangle]); Galal et al. (2009 [triangle]); Bordoloi et al. (2009 [triangle]). For a related structure, see: Ji & Shi (2008 [triangle]). For carbohydrazides, see: Rodríguez-Argüelles et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1022-scheme1.jpg

Experimental

Crystal data

  • C16H13N3O3
  • M r = 295.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1022-efi1.jpg
  • a = 16.4236 (17) Å
  • b = 5.3360 (5) Å
  • c = 17.1073 (18) Å
  • β = 114.578 (5)°
  • V = 1363.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 123 K
  • 0.22 × 0.15 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.978, T max = 0.990
  • 7965 measured reflections
  • 2398 independent reflections
  • 2194 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.130
  • S = 1.31
  • 2398 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810011864/lh5023sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810011864/lh5023Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

supplementary crystallographic information

Comment

Hydrazides represent one of the most biologically active class of compounds, possessing a wide spectrum of activities such as anti-microbial (Zia-ur-Rehman et al., 2009), anti-cancer (Galal et al., 2009) and anti-genotoxic (Bordoloi et al., 2009). These have been used as intermediates in the synthesis of oxadiazoles, triazoles and thiadiazoles (Küçükgüzel et al., 2007; et al., 2006; Stocks et al., 2004). Prompted by these observations and in continuation of our studies on the synthesis of various heterocyclic compounds (Ahmad et al., 2010; Zia-ur-Rehman et al., 2009), we herein report the structure of the title compound (I).

In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in a closely related compound (Ji & Shi, 2008). The benzene rings in (I) are linked through a propenylidenehydrazide fragment, C1/C7/N2/N3/C8/C9/C10, which is fully extended with torsion angles in the range 175.4 (2) and 179.9 (2)°. The dihedral angle between the two benzene rings is 58.28 (7)°. In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into a chain along the b-axis and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1 and Fig. 2.

Experimental

A mixture of para nitrobenzohydrazide (0.5 g, 2.76 mmoles), cinnamaldehyde (0.348 ml, 2.76 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was refluxed for a period of 2 hours followed by removal of the solvent under vacuum. The contents were cooled and washed with cold methanol followed by crystallization from the same solvent at room temperature by slow evaporation. Yield: 94%. M.p. 516-517 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 Å. The Uiso(H) were allowed at 1.2Ueq(N/C). The final difference map was essentially featurless.

Figures

Fig. 1.
The title molecule with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
Fig. 2.
The unit cell packing of the title compound; H-bonds have been plotted with dashed lines and H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C16H13N3O3F(000) = 616
Mr = 295.29Dx = 1.439 Mg m3
Monoclinic, P21/cMelting point: 516 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.4236 (17) ÅCell parameters from 5585 reflections
b = 5.3360 (5) Åθ = 1.0–30.0°
c = 17.1073 (18) ŵ = 0.10 mm1
β = 114.578 (5)°T = 123 K
V = 1363.4 (2) Å3Prism, yellow
Z = 40.22 × 0.15 × 0.10 mm

Data collection

Nonius KappaCCD diffractometer2398 independent reflections
Radiation source: fine-focus sealed tube2194 reflections with I > 2σ(I)
graphiteRint = 0.040
ω and [var phi] scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −19→19
Tmin = 0.978, Tmax = 0.990k = −6→6
7965 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: difference Fourier map
wR(F2) = 0.130H-atom parameters constrained
S = 1.31w = 1/[σ2(Fo2) + (0.0266P)2 + 1.5943P] where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.03166 (12)1.0652 (4)0.43280 (12)0.0336 (5)
O20.08966 (14)0.7047 (4)0.42635 (14)0.0444 (6)
O30.42637 (12)1.3627 (3)0.78587 (11)0.0251 (4)
N10.09193 (15)0.9101 (4)0.45964 (14)0.0282 (5)
N20.44504 (13)0.9434 (4)0.81446 (13)0.0208 (5)
H2N0.42310.79230.79810.025*
N30.52157 (13)0.9734 (4)0.88984 (13)0.0218 (5)
C10.32370 (16)1.0791 (5)0.68390 (15)0.0182 (5)
C20.25118 (16)1.2420 (5)0.65552 (16)0.0213 (6)
H20.25381.39060.68710.026*
C30.17520 (17)1.1907 (5)0.58186 (16)0.0229 (6)
H30.12551.30190.56220.028*
C40.17367 (16)0.9725 (5)0.53757 (15)0.0211 (6)
C50.24504 (16)0.8084 (5)0.56339 (16)0.0221 (6)
H50.24230.66150.53100.026*
C60.32073 (17)0.8615 (5)0.63727 (15)0.0212 (6)
H60.37050.75050.65620.025*
C70.40351 (16)1.1446 (5)0.76550 (16)0.0204 (6)
C80.54992 (17)0.7684 (5)0.93255 (16)0.0224 (6)
H80.51710.61760.91250.027*
C90.63111 (17)0.7669 (5)1.01056 (16)0.0224 (6)
H90.66350.91861.03020.027*
C100.66201 (16)0.5566 (5)1.05602 (16)0.0224 (6)
H100.62550.41171.03650.027*
C110.74637 (16)0.5263 (5)1.13289 (15)0.0199 (5)
C120.81544 (17)0.7031 (5)1.15687 (16)0.0221 (6)
H120.80870.84801.12250.027*
C130.89376 (17)0.6686 (5)1.23042 (16)0.0242 (6)
H130.93990.79101.24640.029*
C140.90515 (16)0.4560 (5)1.28093 (16)0.0235 (6)
H140.95860.43361.33150.028*
C150.83804 (16)0.2771 (5)1.25705 (16)0.0223 (6)
H150.84580.13061.29090.027*
C160.75935 (16)0.3118 (5)1.18347 (15)0.0199 (5)
H160.71380.18771.16740.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0222 (10)0.0422 (12)0.0276 (10)0.0033 (9)0.0016 (8)0.0063 (9)
O20.0420 (13)0.0311 (12)0.0397 (12)−0.0064 (10)−0.0033 (10)−0.0095 (10)
O30.0251 (10)0.0190 (10)0.0251 (10)−0.0038 (8)0.0044 (8)−0.0010 (8)
N10.0250 (12)0.0297 (13)0.0236 (12)−0.0064 (11)0.0038 (10)0.0034 (10)
N20.0172 (10)0.0185 (11)0.0199 (11)−0.0029 (9)0.0009 (9)0.0007 (9)
N30.0175 (11)0.0223 (11)0.0202 (11)−0.0023 (9)0.0025 (9)−0.0020 (9)
C10.0183 (12)0.0175 (12)0.0183 (12)−0.0011 (10)0.0073 (10)0.0037 (10)
C20.0233 (13)0.0162 (12)0.0232 (13)0.0001 (10)0.0084 (11)−0.0009 (10)
C30.0197 (13)0.0225 (13)0.0238 (13)0.0045 (11)0.0062 (11)0.0050 (11)
C40.0194 (13)0.0230 (13)0.0177 (12)−0.0033 (11)0.0045 (10)0.0041 (10)
C50.0245 (14)0.0199 (13)0.0204 (13)−0.0014 (11)0.0081 (11)−0.0008 (10)
C60.0215 (13)0.0188 (13)0.0217 (13)0.0025 (10)0.0074 (11)0.0024 (10)
C70.0189 (13)0.0201 (13)0.0229 (13)−0.0010 (10)0.0093 (11)−0.0003 (10)
C80.0221 (13)0.0199 (13)0.0248 (13)0.0001 (11)0.0095 (11)−0.0010 (11)
C90.0202 (13)0.0211 (13)0.0214 (13)−0.0027 (11)0.0041 (10)−0.0040 (11)
C100.0198 (13)0.0213 (13)0.0255 (13)−0.0020 (11)0.0088 (11)−0.0034 (11)
C110.0190 (13)0.0211 (13)0.0199 (12)0.0013 (10)0.0083 (10)−0.0027 (10)
C120.0252 (14)0.0165 (13)0.0250 (13)0.0014 (11)0.0108 (11)0.0008 (11)
C130.0195 (13)0.0235 (13)0.0275 (14)−0.0013 (11)0.0077 (11)−0.0021 (11)
C140.0182 (13)0.0265 (14)0.0217 (13)0.0052 (11)0.0043 (10)−0.0007 (11)
C150.0245 (13)0.0201 (13)0.0218 (13)0.0037 (11)0.0089 (11)0.0020 (10)
C160.0222 (13)0.0160 (12)0.0221 (13)−0.0010 (10)0.0098 (11)−0.0016 (10)

Geometric parameters (Å, °)

O1—N11.224 (3)C6—H60.9500
O2—N11.228 (3)C8—C91.442 (3)
O3—C71.228 (3)C8—H80.9500
N1—C41.484 (3)C9—C101.339 (4)
N2—C71.358 (3)C9—H90.9500
N2—N31.386 (3)C10—C111.470 (3)
N2—H2N0.8800C10—H100.9500
N3—C81.290 (3)C11—C161.397 (3)
C1—C21.389 (3)C11—C121.399 (4)
C1—C61.398 (3)C12—C131.388 (4)
C1—C71.506 (3)C12—H120.9500
C2—C31.383 (4)C13—C141.391 (4)
C2—H20.9500C13—H130.9500
C3—C41.384 (4)C14—C151.385 (4)
C3—H30.9500C14—H140.9500
C4—C51.380 (4)C15—C161.391 (3)
C5—C61.384 (3)C15—H150.9500
C5—H50.9500C16—H160.9500
O1—N1—O2124.5 (2)N3—C8—C9120.4 (2)
O1—N1—C4118.3 (2)N3—C8—H8119.8
O2—N1—C4117.3 (2)C9—C8—H8119.8
C7—N2—N3120.8 (2)C10—C9—C8121.6 (2)
C7—N2—H2N119.6C10—C9—H9119.2
N3—N2—H2N119.6C8—C9—H9119.2
C8—N3—N2113.8 (2)C9—C10—C11126.9 (2)
C2—C1—C6119.9 (2)C9—C10—H10116.5
C2—C1—C7117.9 (2)C11—C10—H10116.5
C6—C1—C7122.2 (2)C16—C11—C12118.3 (2)
C3—C2—C1120.8 (2)C16—C11—C10119.3 (2)
C3—C2—H2119.6C12—C11—C10122.4 (2)
C1—C2—H2119.6C13—C12—C11120.6 (2)
C2—C3—C4118.0 (2)C13—C12—H12119.7
C2—C3—H3121.0C11—C12—H12119.7
C4—C3—H3121.0C12—C13—C14120.4 (2)
C5—C4—C3122.6 (2)C12—C13—H13119.8
C5—C4—N1118.4 (2)C14—C13—H13119.8
C3—C4—N1119.0 (2)C15—C14—C13119.6 (2)
C4—C5—C6118.9 (2)C15—C14—H14120.2
C4—C5—H5120.6C13—C14—H14120.2
C6—C5—H5120.6C14—C15—C16120.1 (2)
C5—C6—C1119.7 (2)C14—C15—H15120.0
C5—C6—H6120.1C16—C15—H15120.0
C1—C6—H6120.1C15—C16—C11120.9 (2)
O3—C7—N2123.9 (2)C15—C16—H16119.5
O3—C7—C1121.9 (2)C11—C16—H16119.5
N2—C7—C1114.1 (2)
C7—N2—N3—C8175.4 (2)C2—C1—C7—O3−33.6 (4)
C6—C1—C2—C30.7 (4)C6—C1—C7—O3146.9 (3)
C7—C1—C2—C3−178.9 (2)C2—C1—C7—N2144.5 (2)
C1—C2—C3—C40.1 (4)C6—C1—C7—N2−35.0 (3)
C2—C3—C4—C5−1.0 (4)N2—N3—C8—C9177.3 (2)
C2—C3—C4—N1178.4 (2)N3—C8—C9—C10−179.9 (2)
O1—N1—C4—C5−174.1 (2)C8—C9—C10—C11175.6 (2)
O2—N1—C4—C55.8 (3)C9—C10—C11—C16165.8 (3)
O1—N1—C4—C36.5 (3)C9—C10—C11—C12−15.3 (4)
O2—N1—C4—C3−173.6 (2)C16—C11—C12—C13−1.8 (4)
C3—C4—C5—C61.1 (4)C10—C11—C12—C13179.4 (2)
N1—C4—C5—C6−178.3 (2)C11—C12—C13—C140.7 (4)
C4—C5—C6—C1−0.3 (4)C12—C13—C14—C150.5 (4)
C2—C1—C6—C5−0.6 (4)C13—C14—C15—C16−0.7 (4)
C7—C1—C6—C5178.9 (2)C14—C15—C16—C11−0.3 (4)
N3—N2—C7—O3−4.4 (4)C12—C11—C16—C151.5 (4)
N3—N2—C7—C1177.5 (2)C10—C11—C16—C15−179.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.882.303.132 (3)157
C8—H8···O3i0.952.473.296 (3)146
C14—H14···O1ii0.952.563.305 (3)135
C14—H14···O2iii0.952.543.296 (3)137

Symmetry codes: (i) x, y−1, z; (ii) x+1, y−1, z+1; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5023).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem.44, 2754–2757. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem.44, 1500–1508. [PubMed]
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Ji, N.-N. & Shi, Z.-Q. (2008). Acta Cryst. E64, o1918. [PMC free article] [PubMed]
  • Küçükgüzel, S. G., Küçükgüzel, I., Tatar, E., Rollas, S., Sahin, F., Güllüce, M., Clercq, E. D. & Kabasakal, L. (2007). Eur. J. Med. Chem.42, 893–901. [PubMed]
  • Navidpour, L., Shafaroodi, H., Abdi, K., Amini, M., Ghahremani, M. H., Dehpour, A. R. & Shafiee, A. (2006). Bioorg. Med. Chem.14, 2507–2517. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem.98, 313–321. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stocks, M. J., Cheshire, D. R. & Reynalds, R. (2004). Org. Lett.6, 2969–2971. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem.44, 1311–1316. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography